GENERIC formalism of a Vlasov-Fokker-Planck equation and connection to large-deviation principles

被引:52
|
作者
Manh Hong Duong [1 ]
Peletier, Mark A. [1 ,2 ]
Zimmer, Johannes [3 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
WASSERSTEIN GRADIENT FLOW; DIFFUSION; THERMODYNAMICS; MODEL;
D O I
10.1088/0951-7715/26/11/2951
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the connections between a Vlasov-Fokker-Planck equation and an underlying microscopic particle system, and we interpret those connections in the context of the GENERIC framework (Ottinger 2005 Beyond Equilibrium Thermodynamics (New York: Wiley-Interscience)). This interpretation provides (a) a variational formulation for GENERIC systems, (b) insight into the origin of this variational formulation, and (c) an explanation of the origins of the conditions that GENERIC places on its constitutive elements, notably the so-called degeneracy or non-interaction conditions. This work shows how the general connection between large-deviation principles on one hand and gradient-flow structures on the other hand extends to non-reversible particle systems.
引用
收藏
页码:2951 / 2971
页数:21
相关论文
共 50 条
  • [1] STATIONARY SOLUTIONS OF THE VLASOV-FOKKER-PLANCK EQUATION
    DRESSLER, K
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1987, 9 (02) : 169 - 176
  • [2] On a Vlasov-Fokker-Planck equation for stored electron beams
    Cesbron, Ludovic
    Herda, Maxime
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 404 : 316 - 353
  • [3] The fastVFP code for solution of the Vlasov-Fokker-Planck equation
    Bell, A. R.
    Sherlock, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (03)
  • [4] FRACTIONAL DIFFUSION LIMIT FOR A FRACTIONAL VLASOV-FOKKER-PLANCK EQUATION
    Aceves-Sanchez, Pedro
    Cesbron, Ludovic
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 469 - 488
  • [5] SPECTRUM OF A VLASOV-FOKKER-PLANCK OPERATOR
    ZWEIFEL, PF
    OHLMANN, J
    PROGRESS IN NUCLEAR ENERGY, 1981, 8 (2-3) : 145 - 150
  • [6] Study of bunch instabilities by the nonlinear Vlasov-Fokker-Planck equation
    Warnock, Robert L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 561 (02): : 186 - 194
  • [7] The Vlasov-Fokker-Planck equation with high dimensional parametric forcing term
    Jin, Shi
    Zhu, Yuhua
    Zuazua, Enrique
    NUMERISCHE MATHEMATIK, 2022, 150 (02) : 479 - 519
  • [8] A deterministic particle method for the Vlasov-Fokker-Planck equation in one dimension
    Wollman, Stephen
    Ozizmir, Ercument
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (02) : 316 - 365
  • [9] STEADY-STATES IN PLASMA PHYSICS - THE VLASOV-FOKKER-PLANCK EQUATION
    DRESSLER, K
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (06) : 471 - 487
  • [10] VLASOV-FOKKER-PLANCK DESCRIPTION OF PLASMA STABILITY
    SPIGA, G
    WILLIS, BL
    ZWEIFEL, PF
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1981, 10 (04): : 149 - 160