A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion

被引:166
作者
Song, Seungmoon [1 ]
Geyer, Hartmut [1 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2015年 / 593卷 / 16期
基金
美国国家科学基金会;
关键词
HUMAN WALKING; EPIDURAL STIMULATION; BIPEDAL LOCOMOTION; MUSCLE SYNERGIES; LEG MUSCLES; MODEL; CORD; REFLEX; RESPONSES; MOVEMENT;
D O I
10.1113/JP270228
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neural networks along the spinal cord contribute substantially to generating locomotion behaviours in humans and other legged animals. However, the neural circuitry involved in this spinal control remains unclear. We here propose a specific circuitry that emphasizes feedback integration over central pattern generation. The circuitry is based on neurophysiologically plausible muscle-reflex pathways that are organized in 10 spinal modules realizing limb functions essential to legged systems in stance and swing. These modules are combined with a supraspinal control layer that adjusts the desired foot placements and selects the leg that is to transition into swing control during double support. Using physics-based simulation, we test the proposed circuitry in a neuromuscular human model that includes neural transmission delays, musculotendon dynamics and compliant foot-ground contacts. We find that the control network is sufficient to compose steady and transitional 3-D locomotion behaviours including walking and running, acceleration and deceleration, slope and stair negotiation, turning, and deliberate obstacle avoidance. The results suggest feedback integration to be functionally more important than central pattern generation in human locomotion across behaviours. In addition, the proposed control architecture may serve as a guide in the search for the neurophysiological origin and circuitry of spinal control in humans.
引用
收藏
页码:3493 / 3511
页数:19
相关论文
共 71 条
[1]   Optimality principles for model-based prediction of human gait [J].
Ackermann, Marko ;
van den Bogert, Antonie J. .
JOURNAL OF BIOMECHANICS, 2010, 43 (06) :1055-1060
[2]   Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans [J].
Angeli, Claudia A. ;
Edgerton, V. Reggie ;
Gerasimenko, Yury P. ;
Harkema, Susan J. .
BRAIN, 2014, 137 :1394-1409
[3]  
[Anonymous], 1975, TECHNICAL REPORT
[4]   A Model of the Lower Limb for Analysis of Human Movement [J].
Arnold, Edith M. ;
Ward, Samuel R. ;
Lieber, Richard L. ;
Delp, Scott L. .
ANNALS OF BIOMEDICAL ENGINEERING, 2010, 38 (02) :269-279
[5]   Combining modules for movement [J].
Bizzi, E. ;
Cheung, V. C. K. ;
d'Avella, A. ;
Saltiel, P. ;
Tresch, M. .
BRAIN RESEARCH REVIEWS, 2008, 57 (01) :125-133
[6]   The neural origin of muscle synergies [J].
Bizzi, Emilio ;
Cheung, Vincent C. K. .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7 :1-6
[8]   A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits [J].
Capogrosso, Marco ;
Wenger, Nikolaus ;
Raspopovic, Stanisa ;
Musienko, Pavel ;
Beauparlant, Janine ;
Luciani, Lorenzo Bassi ;
Courtine, Gregoire ;
Micera, Silvestro .
JOURNAL OF NEUROSCIENCE, 2013, 33 (49) :19326-19340
[9]   Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors [J].
Cheung, VCK ;
d'Avella, A ;
Tresch, MC ;
Bizzi, E .
JOURNAL OF NEUROSCIENCE, 2005, 25 (27) :6419-6434
[10]   Modulation of multisegmentalmonosynaptic responses in a variety of leg muscles during walking and running in humans [J].
Courtine, Gr Goire ;
Harkema, Susan J. ;
Dy, Christine J. ;
Gerasimenko, Yuri P. ;
Dyhre-Poulsen, Poul .
JOURNAL OF PHYSIOLOGY-LONDON, 2007, 582 (03) :1125-1139