Construction of high-performance triboelectric nanogenerators based on the microstructures of conical nanoneedles

被引:3
|
作者
Wang, Lixia [1 ,2 ]
Sun, Xiang [1 ,2 ]
Wang, Dongfang [1 ,2 ]
Wang, Chen [1 ,2 ]
Bi, Zhaojie [1 ,2 ]
Zhou, Baokai [1 ,2 ]
Zheng, Lun [1 ,2 ]
Niu, Hongbin [1 ,2 ]
Cui, Pengyuan [1 ,2 ]
Wang, Jian [1 ,2 ]
Li, Qian [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Mech & Safety Engn, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Natl Ctr Int Res Micronano Molding Technol, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
CHARGE-DENSITY; PHB; ENHANCEMENT; NANOFIBERS; ELECTRODES; SENSORS;
D O I
10.1039/d2nj04639c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a new energy-harvesting and signal-monitoring technology, triboelectric nanogenerators (TENGs) have received increasing attention. Research into the output performance is essential to promote the application of TENGs. Based on copper meshes with an in situ-grown conical nanoneedle (IGCN) structure on the surface, a poly(beta-hydroxybutyrate) (PHB) membrane was hot embossed to construct a microstructure. Then, the effects of the copper mesh hot-embossing on the microstructures, hydrophilic and hydrophobic properties, and the mechanical properties of the PHB membrane were investigated. A TENG was made by a hot-embossed PHB membrane and expanded polytetrafluoroethylene (ePTFE), and the influence of the microstructures on the triboelectric properties was explored. The results showed that the surface roughness of the PHB membrane was significantly increased by the hot embossing, and the roughness increased with the increase in the copper mesh size. Compared with the smooth copper mesh hot-embossing, the roughness of the PHB membrane hot embossed with IGCN was increased more obviously. The introduction of IGCN could significantly improve the output performance of TENG. Compared with using the original PHB membrane, the open-circuit voltage, short-circuit current density, and short-circuit transferred charge density of the TENG using the PHB membrane hot-embossed with copper mesh with a 500 mesh number with nanoneedles were increased by 86.6%, 54.8%, and 96.7%, respectively, which provides a new method to improve the output performance of TENGs.
引用
收藏
页码:22064 / 22075
页数:12
相关论文
共 50 条
  • [41] High-Performance Triboelectric Nanogenerators Based on Commercial Textiles: Electrospun Nylon 66 Nanofibers on Silk and PVDF on
    Bairagi, Satyaranjan
    Khandelwal, Gaurav
    Karagiorgis, Xenofon
    Gokhool, Shravan
    Kumar, Charchit
    Min, Guanbo
    Mulvihill, Daniel M.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (39) : 44591 - 44603
  • [42] Performance of Triboelectric Nanogenerators Based on Hyperelastic Polydimethylsiloxane
    Wang X.-L.
    Niu Z.-H.
    Yang W.-X.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2020, 40 (03): : 250 - 253and281
  • [43] Nature-inspired scalable high-performance triboelectric nanogenerators for energy harvesting and sensing
    Wang, Qian
    Xu, Bingang
    Tan, Di
    Hu, Xin
    Yang, Yujue
    Huang, Junxian
    Gao, Yuanyuan
    Liu, Xinlong
    NANO ENERGY, 2024, 121
  • [44] High-performance triboelectric nanogenerators boosted by synergistically aligned piezoelectric/conductive composite nanofibers
    Yan, Jing
    Zhang, Xiaojing
    Zhu, Ning
    Qin, Yuebin
    Yang, Guang
    POLYMER COMPOSITES, 2025, 46 (04) : 3228 - 3238
  • [45] MOF-808 Enhanced MXene Tribopositive Layer for High-Performance Triboelectric Nanogenerators
    Memon, Muzamil Hussain
    Mir, Amna
    Rehman, Fahad
    Amjad, Um-e-Salma
    Mustafa, Maria
    ENERGY TECHNOLOGY, 2025,
  • [46] Biodegradable, stretchable, and high-performance triboelectric nanogenerators through interfacial polarization in bilayer structure
    Park, Yong-Jin
    Kwak, Min Sub
    Kim, Yonggi
    Na, Sangyun
    Chang, Yoojin
    Kim, Young-Ryul
    Cho, Haryeong
    Lee, Seungjae
    Kim, Jae Joon
    Ko, Hyunhyub
    NANO ENERGY, 2024, 132
  • [47] Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators
    Kim, Dong Wook
    Lee, Ju Hyun
    You, Insang
    Kim, Jin Kon
    Jeong, Unyong
    NANO ENERGY, 2018, 50 : 192 - 200
  • [48] Advanced Cellulose-Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators
    Gonzalez, Jaime
    Ghaffarinejad, Ali
    Ivanov, Maxim
    Ferreira, Paula
    Vilarinho, Paula M.
    Borras, Ana
    Amorin, Harvey
    Wicklein, Bernd
    NANOMATERIALS, 2023, 13 (07)
  • [49] Contact Electrification at Adhesive Interface: Boosting Charge Transfer for High-Performance Triboelectric Nanogenerators
    Shi, Kunming
    Chai, Bin
    Zou, Haiyang
    Wen, Zhen
    He, Meng
    Chen, Jie
    Jiang, Pingkai
    Huang, Xingyi
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (50)
  • [50] High-Performance, Mechanically and Thermally Compliant Silica-Based Solid Polymer Electrolyte for Triboelectric Nanogenerators Application
    Uzabakiriho, Pierre Clover
    Haider, Zeeshan
    Emmanuel, Kamana
    Ahmad, Rafi U. Shan
    Haleem, Abdul
    Farooq, Umar
    Uwisengeyimana, Jean De Dieux
    Mbogba, Momoh Karmah
    Fareed, Azam
    Memon, Kashan
    Khan, Irfan
    Hu, Peng
    Zhao, Gang
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (07)