Commonsense Knowledge Enhanced Memory Network for Stance Classification

被引:17
作者
Du, Jiachen [1 ]
Gui, Lin [2 ]
Xu, Ruifeng [3 ]
Xia, Yunqing [4 ]
Wang, Xuan [3 ]
机构
[1] Harbin Inst Technol, Shenzhen, Peoples R China
[2] Univ Warwick, Coventry, W Midlands, England
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[4] Microsoft, Search Technol Ctr, Beijing, Peoples R China
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
30;
D O I
10.1109/MIS.2020.2983497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stance classification aims at identifying, in the text, the attitude toward the given targets as favorable, negative, or unrelated. In existing models for stance classification, only textual representation is leveraged, while commonsense knowledge is ignored. In order to better incorporate commonsense knowledge into stance classification, we propose a novel model named commonsense knowledge enhanced memory network, which jointly represents textual and commonsense knowledge representation of given target and text. The textual memory module in our model treats the textual representation as memory vectors, and uses attention mechanism to embody the important parts. For commonsense knowledge memory module, we jointly leverage the entity and relation embeddings learned by TransE model to take full advantage of constraints of the knowledge graph. Experimental results on the SemEval dataset show that the combination of the commonsense knowledge memory and textual memory can improve stance classification.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 30 条
  • [1] [Anonymous], 2016, ENV FOOTPRINTS ECODE, DOI DOI 10.1007/978-981-10-0566-4_3
  • [2] DBpedia: A nucleus for a web of open data
    Auer, Soeren
    Bizer, Christian
    Kobilarov, Georgi
    Lehmann, Jens
    Cyganiak, Richard
    Ives, Zachary
    [J]. SEMANTIC WEB, PROCEEDINGS, 2007, 4825 : 722 - +
  • [3] Augenstein I., 2016, P 2016 C EMP METH NA, P876, DOI DOI 10.18653/V1/D16-1084
  • [4] Bollacker Kurt, 2008, P 2008 ACM SIGMOD IN, P1247, DOI DOI 10.1145/1376616.1376746
  • [5] Bordes Antoine, 2013, ADV NEURAL INF PROCE, P2787
  • [6] Botschen Teresa, 2018, P 5 WORKSH ARG MIN A, P90
  • [7] Cambria E, 2018, AAAI CONF ARTIF INTE, P1795
  • [8] Cambria E, 2011, LECT NOTES COMPUT SC, V6677, P601, DOI 10.1007/978-3-642-21111-9_68
  • [9] Cambria E, 2009, LECT NOTES COMPUT SC, V5707, P252, DOI 10.1007/978-3-642-04391-8_33
  • [10] Distinguishing between facts and opinions for sentiment analysis: Survey and challenges
    Chaturvedi, Iti
    Cambria, Erik
    Welsch, Roy E.
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2018, 44 : 65 - 77