Ferromagnetism in a quantum Hall system due to exchange enhancement in a GaInAs quantum well

被引:1
|
作者
Nachtwei, G
Manolescu, A
Nestle, N
Künzel, H
机构
[1] Tech Univ Braunschweig, Phys Tech Inst, D-38106 Braunschweig, Germany
[2] Inst Natl Fiz Mat, Bucharest, Romania
[3] Univ Leipzig, Abt Grenzflachenphys, D-04103 Leipzig, Germany
[4] Heinrich Hertz Inst Nachrichtentech Berlin GmbH, D-10587 Berlin, Germany
关键词
quantum Hall effect; ferromagnetism; nonequilibrium transport;
D O I
10.1016/S1386-9477(01)00265-X
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have investigated Ga0.47In0.53As/Al0.48In0.52As quantum well structures at magnetic fields close to the filling factor 1. At the critical current. a bistable and abrupt switching (transition width less than 4 ppm with respect to the filling factor) between quantum Hall conduction and dissipative conduction was observed at filling factors 1 < v < 1.5. As confirmed by Hartree-Fock calculations. we attribute this switching to a feedback effect between the current-dependent population of different spin levels and the exchange-enhanced spin gap, The effect is accompanied by a ferromagnetic memory of the spin polarization when changing the external magnetic field. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 50 条
  • [31] Quantum Hall effect in the highly spin-polarized electron system
    Jaroszynski, J
    Karczewski, G
    Andrearczyk, T
    Wojtowicz, T
    Wróbel, J
    Papis, E
    Kaminska, E
    Piotrowska, A
    Dietl, T
    PHYSICA B, 2000, 280 (1-4): : 378 - 379
  • [32] Anisotropic magnetotransport by the pseudospin soliton in the bilayer ν=1 quantum Hall system
    Fukuda, A.
    Morino, M.
    Iwata, K.
    Terasawa, D.
    Kozumi, S.
    Kumada, N.
    Hirayama, Y.
    Ezawa, Z. F.
    Sawada, A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05) : 1255 - 1257
  • [33] Anomalous quantum Hall resistance in Al0.6Ga0.4As0.1Sb0.9/InAs quantum well with tunable carrier density
    Oto, K.
    Tamiya, S.
    Ishida, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1419 - 1423
  • [34] Effect of the change in the interface structure of Pd(100)/SrTiO3 for quantum-well induced ferromagnetism
    Sakuragi, Shunsuke
    Ogawa, Tomoyuki
    Sato, Tetsuya
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 423 : 453 - 457
  • [35] Quantum Hall effect in a two-dimensional electron system bent by 90°
    Grayson, M
    Schuh, D
    Bichler, M
    Huber, M
    Abstreiter, G
    Hoeppel, L
    Smet, J
    Von Klitzing, K
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (1-3) : 181 - 184
  • [36] Quantum Hall effect transitions in a bilayer electron system in tilted magnetic fields
    Lay, TS
    Jungwirth, T
    Smrcka, L
    Shayegan, M
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 832 - 835
  • [37] Evaluation of a quantum hall effect system of small size for use as resistance standard
    Nakanishi, M
    Kinoshita, J
    Sakuraba, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1996, 35 (9A): : 4862 - 4863
  • [38] In-plane noncollinear exchange coupling mediated by helical edge states in quantum spin Hall systems
    Gao, Jinhua
    Chen, Weiqiang
    Xie, X. C.
    Zhang, Fu-chun
    PHYSICAL REVIEW B, 2009, 80 (24):
  • [39] THz-photon generation due to electrons injected via quantum-Hall edge channels
    Ikushima, Kenji
    Komiyama, Susumu
    Ueda, Takeji
    Hirakawa, Kazuhiko
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05) : 1026 - 1029
  • [40] Quantum Hall and insulating states of a 2-D electron-hole system
    Takashina, K
    Nicholas, RJ
    Mason, NJ
    Maude, DK
    Portal, JC
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 20 (1-2) : 160 - 171