The Billard Theorem for Multiple Random Fourier Series

被引:2
作者
Ronsin, Samuel [1 ]
Bierme, Hermine [2 ]
Moisan, Lionel [1 ]
机构
[1] Univ Paris 05, Sorbonne Paris Cite, MAP5, CNRS,UMR 8145, 45 Rue St Peres, F-75006 Paris, France
[2] Univ Poitiers, LMA, CNRS, UMR 7348, Blvd Marie & Pierre Curie, F-86962 Chasseneuil, France
关键词
Billard Theorem; Random Fourier series; Multiple Fourier series; Random phase; Random fields; CONVERGENCE; DIVERGENCE;
D O I
10.1007/s00041-016-9467-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a generalization of a classical result on random Fourier series, namely the Billard Theorem, for random Fourier series over the d-dimensional torus. We provide an investigation of the independence with respect to a choice of a sequence of partial sums (or method of summation). We also study some probabilistic properties of the resulting sum field such as stationarity and characteristics of the marginal distribution.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 21 条
[1]  
[Anonymous], 1991, Probability in Banach Spaces
[2]  
[Anonymous], 1970, Characteristic Functions
[3]   CONVERGENCE, UNIQUENESS, AND SUMMABILITY OF MULTIPLE TRIGONOMETRIC SERIES [J].
ASH, JM ;
WELLAND, GV .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 163 (NJAN) :401-&
[4]   Fejer means for multivariate Fourier series [J].
Berens, H ;
Xu, Y .
MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (03) :449-465
[5]  
Billard P., 1963, STUD MATH, V22, P310
[6]   Probability density of finite Fourier series with random phases [J].
Blevins, RD .
JOURNAL OF SOUND AND VIBRATION, 1997, 208 (04) :617-652
[7]  
Cohen G., 2005, B POL ACAD SCI MATH, V53, P101
[8]   DIVERGENCE OF MULTIPLE FOURIER SERIES [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (02) :191-+
[9]   CONVERGENCE OF MULTIPLE FOURIER SERIES [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (05) :744-+
[10]  
FIGATALAMANCA A, 1969, P AM MATH SOC, V22, P573