In-Situ Atomic Force Microscopy (AFM) Imaging: Influence of AFM Probe Geometry on Diffusion to Microscopic Surfaces

被引:27
作者
Burt, David P. [1 ]
Wilson, Neil R. [1 ]
Janus, Ulrich [1 ]
Macpherson, Julie V. [1 ]
Unwin, Patrick R. [1 ]
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1021/la8003323
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effect of AFM probe geometry on diffusion to micrometer-scale reactive (electrode) interfaces is considered. A disk-shaped substrate electrode was held at a potential to reduce a species of interest (aqueous Ru(NH3)(6)(3+)) at a diffusion-control led rate and the current response during AFM imaging provided information on local mass transport to the interface. This approach reveals how the AFM probe influences diffusion to a reactive surface, which is of importance in more clearly delineating the conditions under which in-situ AFM can be treated as a noninvasive probe of surface processes involving mass transport (e.g., electrode reactions and crystal dissolution and growth). An assessment has been made of three types of probes: V-shaped silicon nitride contact mode probes; single beam silicon probes; and batch-fabricated scanning electrochemical-atomic force microscopy (SECM-AFM) probes. Two disk electrodes, (6.1 mu m and 1.6 mu m diameter) have been considered as substrates. The results indicate that conventional V-shaped contact mode probes are the most invasive and that the batch-fabricated SECM-AFM probes are the least invasive to diffusion at both of the substrates used herein. The experimental data are complemented by the development of simulations based on a simple 2D model of the AFM probe and active surface site. The importance of probe parameters such as the cantilever size, tip cone height, and cone angle is discussed, and the implications of the results for studies in other areas, such as growth and dissolution processes, are considered briefly.
引用
收藏
页码:12867 / 12876
页数:10
相关论文
共 53 条
[1]   Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape [J].
Abbou, Jeremy ;
Anne, Agnes ;
Demaille, Christophe .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22664-22675
[2]   Biological applications of scanning electrochemical microscopy: chemical imaging of single living cells and beyond [J].
Amemiya, Shigeru ;
Guo, Jidong ;
Xiong, Hui ;
Gross, Darrick A. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 386 (03) :458-471
[3]   Scanning electrochemical microscopy (SECM): An investigation of the effects of tip geometry on amperometric tip response [J].
Amphlett, JL ;
Denuault, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (49) :9946-9951
[4]   THEORY OF ULTRAMICROELECTRODES [J].
AOKI, K .
ELECTROANALYSIS, 1993, 5 (08) :627-639
[5]  
AREA M, 1994, ANALYST, V119, P719
[6]   Imaging concentration profiles of redox-active species with nanometric amperometric probes: Effect of natural convection on transport at microdisk electrodes [J].
Baltes, N ;
Thouin, L ;
Amatore, C ;
Heinze, J .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (11) :1431-1435
[7]   CHEMICAL IMAGING OF SURFACES WITH THE SCANNING ELECTROCHEMICAL MICROSCOPE [J].
BARD, AJ ;
FAN, FRF ;
PIERCE, DT ;
UNWIN, PR ;
WIPF, DO ;
ZHOU, FM .
SCIENCE, 1991, 254 (5028) :68-74
[8]   DIGITAL-SIMULATION OF THE MEASURED ELECTROCHEMICAL RESPONSE OF REVERSIBLE REDOX COUPLES AT MICROELECTRODE ARRAYS - CONSEQUENCES ARISING FROM CLOSELY SPACED ULTRAMICROELECTRODES [J].
BARD, AJ ;
CRAYSTON, JA ;
KITTLESEN, GP ;
SHEA, TV ;
WRIGHTON, MS .
ANALYTICAL CHEMISTRY, 1986, 58 (11) :2321-2331
[9]   Scanning electrochemical microscopy: Measurement of the current density at microscopic redox-active sites on titanium [J].
Basame, SB ;
White, HS .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (49) :9812-9819
[10]   Imaging molecular transport in porous membranes. Observation and analysis of electroosmotic flow in individual pores using the scanning electrochemical microscope [J].
Bath, BD ;
Lee, RD ;
White, HS ;
Scott, ER .
ANALYTICAL CHEMISTRY, 1998, 70 (06) :1047-1058