Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy

被引:171
作者
Wu, Junjun [1 ,3 ]
Du, Guocheng [2 ,3 ]
Zhou, Jingwen [1 ,3 ]
Chen, Jian [1 ,3 ]
机构
[1] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Natl Engn Lab Cereal Fermentat Technol NELCF, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Escherichia coli; Flavonoids; Metabolic engineering; (2S)-pinocembrin; COMBINATORIAL BIOSYNTHESIS; ISCHEMIA-REPERFUSION; EFFICIENT PRODUCTION; PINOCEMBRIN; FLAVONOIDS; BRAIN; FLAVANONES; EXPRESSION; PLASMID; PATHWAY;
D O I
10.1016/j.ymben.2012.11.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Flavonoids are valuable natural products widely used in human health and nutrition. Recent advances in synthetic biology and metabolic engineering have yielded improved strain titers and yields. However, current fermentation strategies often require supplementation of expensive phenylpropanoic precursors in the media and separate evaluation of each strategy in turn as part of the flavonoid pathway, implicitly assuming the modifications are additive. In this study, an Escherichia coli fermentation system was developed to bypass both of these problems. An eight-step pathway, consisting of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHPS), chorismate mutase/prephenate dehydratase (CM/PDT), phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), malonate synthetase, and malonate carrier protein, was assembled on four vectors in order to produce the flavonoid precursor (2S)-pinocembrin directly from glucose. Furthermore, a modular metabolic strategy was employed to identify conditions that optimally balance the four pathway modules. Once this metabolic balance was achieved, such strains were capable of producing 40.02 mg/L (2S)-pinocembrin directly from glucose. These results were attained by culturing engineered cells in minimal medium without additional precursor supplementation. The fermentation platform described here paves the way for the development of an economical process for microbial production of flavonoids directly from glucose. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 55
页数:8
相关论文
共 50 条
  • [41] Metabolic engineering of Escherichia coli to produce zeaxanthin
    Li, Xi-Ran
    Tian, Gui-Qiao
    Shen, Hong-Jie
    Liu, Jian-Zhong
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2015, 42 (04) : 627 - 636
  • [42] Metabolic engineering of Escherichia coli for production of acetaminophen from glucose based on high selectivity of N-acetyltransferase
    Wu, Shaoting
    Kong, Sijia
    Hu, Chunyue
    Pan, Hong
    Guo, Daoyi
    BIOCHEMICAL ENGINEERING JOURNAL, 2024, 203
  • [43] Metabolic Engineering of De Novo Pathway for the Production of 2′-Fucosyllactose in Escherichia coli
    Li, Chenchen
    Li, Mengli
    Hu, Miaomiao
    Zhang, Tao
    MOLECULAR BIOTECHNOLOGY, 2023, 65 (09) : 1485 - 1497
  • [44] Systematic metabolic engineering of Escherichia coli for the enhanced production of cinnamaldehyde
    Bang, Hyun Bae
    Son, Jaewoo
    Kim, Sun Chang
    Jeong, Ki Jun
    METABOLIC ENGINEERING, 2023, 76 : 63 - 74
  • [45] Metabolic engineering for the production of l-phenylalanine in Escherichia coli
    Liu, Xiaozhen
    Niu, Hao
    Li, Qiang
    Gu, Pengfei
    3 BIOTECH, 2019, 9 (03)
  • [46] Metabolic engineering Escherichia coli for efficient production of icariside D2
    Liu, Xue
    Li, Lingling
    Liu, Jincong
    Qiao, Jianjun
    Zhao, Guang-Rong
    BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (01)
  • [47] Systems Metabolic Engineering of Escherichia coli Coculture for De Novo Production of Genistein
    Liu, Xue
    Li, Lingling
    Zhao, Guang-Rong
    ACS SYNTHETIC BIOLOGY, 2022, 11 (05): : 1746 - 1757
  • [48] METABOLIC PATHWAY MODIFICATION FOR PRODUCTION OF XYLITOL FROM GLUCOSE IN ESCHERICHIA COLI
    Abdullah, Noradilin
    Illias, Rosli Md
    Oon, Low Kheng
    Jaafar, Nardiah Rizwana
    Sukri, Norhamiza Mohamad
    Rahman, Roshanida Abdul
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2022, 84 (03): : 151 - 162
  • [49] Taurine production by systems metabolic engineering of Escherichia coli
    Choi, Y. J.
    Park, J. H.
    Lee, S. Y.
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S515 - S515
  • [50] Metabolic engineering of Escherichia coli for the production of isobutanol: a review
    Gu, Pengfei
    Liu, Liwen
    Ma, Qianqian
    Dong, Zilong
    Wang, Qiang
    Xu, Jie
    Huang, Zhaosong
    Li, Qiang
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2021, 37 (10)