Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy

被引:171
作者
Wu, Junjun [1 ,3 ]
Du, Guocheng [2 ,3 ]
Zhou, Jingwen [1 ,3 ]
Chen, Jian [1 ,3 ]
机构
[1] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Natl Engn Lab Cereal Fermentat Technol NELCF, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Escherichia coli; Flavonoids; Metabolic engineering; (2S)-pinocembrin; COMBINATORIAL BIOSYNTHESIS; ISCHEMIA-REPERFUSION; EFFICIENT PRODUCTION; PINOCEMBRIN; FLAVONOIDS; BRAIN; FLAVANONES; EXPRESSION; PLASMID; PATHWAY;
D O I
10.1016/j.ymben.2012.11.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Flavonoids are valuable natural products widely used in human health and nutrition. Recent advances in synthetic biology and metabolic engineering have yielded improved strain titers and yields. However, current fermentation strategies often require supplementation of expensive phenylpropanoic precursors in the media and separate evaluation of each strategy in turn as part of the flavonoid pathway, implicitly assuming the modifications are additive. In this study, an Escherichia coli fermentation system was developed to bypass both of these problems. An eight-step pathway, consisting of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHPS), chorismate mutase/prephenate dehydratase (CM/PDT), phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), malonate synthetase, and malonate carrier protein, was assembled on four vectors in order to produce the flavonoid precursor (2S)-pinocembrin directly from glucose. Furthermore, a modular metabolic strategy was employed to identify conditions that optimally balance the four pathway modules. Once this metabolic balance was achieved, such strains were capable of producing 40.02 mg/L (2S)-pinocembrin directly from glucose. These results were attained by culturing engineered cells in minimal medium without additional precursor supplementation. The fermentation platform described here paves the way for the development of an economical process for microbial production of flavonoids directly from glucose. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 55
页数:8
相关论文
共 50 条
  • [31] Metabolic Engineering of Escherichia coli for Production of 2-Phenylethanol and 2-Phenylethyl Acetate from Glucose
    Guo, Daoyi
    Zhang, Lihua
    Kong, Sijia
    Liu, Zhijie
    Li, Xun
    Pan, Hong
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (23) : 5886 - 5891
  • [32] Metabolic Engineering of Escherichia coli for Ectoine Production With a Fermentation Strategy of Supplementing the Amino Donor
    Zhang, Hao
    Liang, Zhong
    Zhao, Ming
    Ma, Yanqin
    Luo, Zhengshan
    Li, Sha
    Xu, Hong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [33] Metabolic engineering of Escherichia coli for the production of an antifouling agent zosteric acid
    Zhang, Peichao
    Gao, Jing
    Zhang, Haiyang
    Wang, Yongzhen
    Liu, Zhen
    Lee, Sang Yup
    Mao, Xiangzhao
    METABOLIC ENGINEERING, 2023, 76 : 247 - 259
  • [34] Metabolic engineering of Escherichia coli for the production of cinnamaldehyde
    Bang, Hyun Bae
    Lee, Yoon Hyeok
    Kim, Sun Chang
    Sung, Chang Keun
    Jeong, Ki Jun
    MICROBIAL CELL FACTORIES, 2016, 15
  • [35] Modular Engineering of Tyrosol Production in Escherichia coli
    Yang, Haiquan
    Xue, Yuxiang
    Yang, Cui
    Shen, Wei
    Fan, You
    Chen, Xianzhong
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (14) : 3900 - 3908
  • [36] Metabolic engineering of Escherichia coli for chondroitin production
    Zhao C.
    Guo L.
    Gao C.
    Song W.
    Wu J.
    Liu J.
    Liu L.
    Chen X.
    Huagong Xuebao/CIESC Journal, 2023, 74 (05): : 2111 - 2122
  • [37] Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering
    Guo, Lei
    Chen, Xi
    Li, Li-Na
    Tang, Wei
    Pan, Yi-Ting
    Kong, Jian-Qiang
    MICROBIAL CELL FACTORIES, 2016, 15
  • [38] Metabolic Engineering of Escherichia coli for the Production of Hyaluronic Acid From Glucose and Galactose
    Woo, Ji Eun
    Seong, Hyeon Jeong
    Lee, Sang Yup
    Jang, Yu-Sin
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7
  • [39] Metabolic engineering of Escherichia coli for agmatine production
    Xu, Daqing
    Zhang, Lirong
    ENGINEERING IN LIFE SCIENCES, 2019, 19 (01): : 13 - 20
  • [40] Metabolic Engineering of Escherichia coli for Astragalin Biosynthesis
    Pei, Jianjun
    Dong, Ping
    Wu, Tao
    Zhao, Linguo
    Fang, Xianying
    Cao, Fuliang
    Tang, Feng
    Yue, Yongde
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2016, 64 (42) : 7966 - 7972