Multiple diffusion pathways in LixNi0.77Co0.14Al0.09O2(NCA) Li-ion battery cathodes

被引:7
作者
Ashton, Thomas E. [1 ]
Baker, Peter J. [2 ]
Bauer, Dustin [1 ]
Groves, Alexandra R. [1 ]
Sotelo-Vazquez, Carlos [1 ]
Kamiyama, Takashi [3 ]
Matsukawa, Takeshi [4 ]
Kojima, Kenji M. [5 ,6 ]
Darr, Jawwad A. [1 ]
机构
[1] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[2] Harwell Sci & Innovat Campus, ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[3] J PARC Ctr, Mat & Life Sci Div, Tokai, Ibaraki 3191195, Japan
[4] Ibaraki Univ, Frontier Res Ctr Appl Atom Sci, 162-1 Shirakata, Tokai, Ibaraki 3191106, Japan
[5] TRIUMF, Ctr Mol & Mat Sci, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
[6] Univ British Columbia, Stewart Blusson Quantum Matter Inst, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
COBALT MIXED OXIDES; ELECTRODE MATERIALS; POSITIVE ELECTRODE; LITHIUM; LICOO2; STABILITY; ALUMINUM; MUON; LIXCOO2; SURFACE;
D O I
10.1039/d0ta03809a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Experimental evidence for the presence of two computationally theorised diffusion pathways, namely the oxygen dumbbell hop (ODH) and tetrahedral site hop (TSH), has been given for the first time by muon spin relaxation (mu SR) on sub-stoichiometric LixNi0.77Co0.14Al0.09O2. mu SR has proven to be a powerful tool that is able to discriminate between diffusion pathways that occur on different timescales on a local level, where bulk electrochemical techniques cannot. Whereas the estimated values ofD(Li)at lithium concentrations of 0.87 and 0.71 were found to be on the order of 10(-11)by electrochemical impedance spectroscopy, contributions to diffusion from ODH and TSH were determined to be on the order of 10(-11)and 10(-10)cm(2)s(-1), and a factor of four decrease inE(a)for both samples, in excellent agreement with theoretical calculations on related compounds. Rietveld refinement of both X-ray and neutron diffraction data was also used to interrogate the local structure of the materials where no contribution from Li+/Ni(2+)cation mixing was observed.
引用
收藏
页码:11545 / 11552
页数:8
相关论文
共 54 条
  • [1] Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1-x(Ni1-y-zCoyMz)O2 (M = Al, Mg)
    Albrecht, S
    Kümpers, J
    Kruft, M
    Malcus, S
    Vogler, C
    Wahl, M
    Wohlfahrt-Mehrens, M
    [J]. JOURNAL OF POWER SOURCES, 2003, 119 : 178 - 183
  • [2] Characterization of Electronic and Ionic Transport in Li1-xNi0.8Co0.15Al0.05O2 (NCA)
    Amin, Ruhul
    Ravnsbaek, Dorthe Bomholdt
    Chiang, Yet-Ming
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) : A1163 - A1169
  • [3] Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy
    Amores, Marco
    Ashton, Thomas E.
    Baker, Peter J.
    Cussen, Edmund J.
    Corr, Serena A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) : 1729 - 1736
  • [4] [Anonymous], 2015, C PART COP PAR CLIM
  • [5] [Anonymous], 2012, An Introduction to Solid State Diffusion
  • [6] Characteristics of LixNiO2 obtained by chemical delithiation
    Arai, H
    Sakurai, Y
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 401 - 405
  • [7] Ashton T. E., STFC ISIS NEUTRON MU, DOI [10.5286/ISIS.E.RB1810738, DOI 10.5286/ISIS.E.RB1810738]
  • [8] Muon studies of Li+ diffusion in LiFePO4 nanoparticles of different polymorphs
    Ashton, Thomas E.
    Laveda, Josefa Vidal
    MacLaren, Donald A.
    Baker, Peter J.
    Porch, Adrian
    Jones, Martin O.
    Corr, Serena A.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) : 6238 - 6245
  • [9] Higher CO2 concentrations increase extreme event risk in a 1.5 °C world
    Baker, Hugh S.
    Millar, Richard J.
    Karoly, David J.
    Beyerle, Urs
    Guillod, Benoit P.
    Mitchell, Dann
    Shiogama, Hideo
    Sparrow, Sarah
    Woollings, Tim
    Allen, Myles R.
    [J]. NATURE CLIMATE CHANGE, 2018, 8 (07) : 604 - +
  • [10] Bard A.J, 2001, ELECTROCHEMICAL METH, V2, P236