Fall Detection Using Body-Worn Accelerometer and Depth Maps Acquired by Active Camera

被引:5
|
作者
Kepski, Michal [2 ]
Kwolek, Bogdan [1 ]
机构
[1] AGH Univ Sci & Technol, 30 Mickiewicza Av, PL-30059 Krakow, Poland
[2] Univ Rzeszow, 16c Rejtana Av, PL-35959 Rzeszow, Poland
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS | 2016年 / 9648卷
关键词
Smart home; Human behavior analysis; Fall detection;
D O I
10.1007/978-3-319-32034-2_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the presented system to person fall detection a body-worn accelerometer is used to indicate a potential fall and a ceiling-mounted depth sensor is utilized to authenticate fall alert. In order to expand the observation area the depth sensor has been mounted on a pan-tilt motorized head. If the person acceleration is above a preset threshold the system uses a lying pose detector as well as examines a dynamic feature to authenticate the fall. Thus, more costly fall authentication is not executed frame-by-frame, but instead we fetch from a circular buffer a sequence of depth maps acquired prior to the fall and then process them to confirm fall alert. We show that promising results in terms of sensitivity and specificity can be obtained on publicly available UR Fall Detection dataset.
引用
收藏
页码:414 / 426
页数:13
相关论文
共 50 条
  • [31] Associative Classification based Human Activity Recognition and Fall Detection using Accelerometer
    Hemalatha, C.
    Vaidehi, V.
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2013, 9 (03) : 20 - 37
  • [32] Fall Detection Using Accelerometer, Gyroscope & Impact Force Calculation on Android Smartphones
    Rungnapakan, Traitot
    Chintakovid, Thippaya
    Wuttidittachotti, Pongpisit
    PROCEEDINGS OF 4TH INTERNATIONAL CONFERENCE ON HCI AND UX (CHIUXID 2018), 2018, : 49 - 53
  • [33] A Wearable Device for Fall Detection Elderly People Using Tri Dimensional Accelerometer
    Kurniawan, A.
    Hermawan, A. R.
    Purnama, I. K. E.
    2016 INTERNATIONAL SEMINAR ON INTELLIGENT TECHNOLOGY AND ITS APPLICATIONS (ISITIA): RECENT TRENDS IN INTELLIGENT COMPUTATIONAL TECHNOLOGIES FOR SUSTAINABLE ENERGY, 2016, : 671 - 674
  • [34] Enhanced characterization of an accelerometer-based fall detection algorithm using a repository
    Chen, Kuang-Hsuan
    Hsu, Yu-Wei
    Yang, Jing-Jung
    Jaw, Fu-Shan
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2017, 45 (04) : 382 - 391
  • [35] Fall Detection Using Accelerometer on the User's Wrist and Artificial Neural Networks
    Urresty Sanchez, Javier Alexis
    Munoz, Daniel M.
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL 1, 2019, 70 (01): : 641 - 647
  • [36] Accelerometer-based fall detection using optimized ZigBee data streaming
    Benocci, Marco
    Tacconi, Carlo
    Farella, Elisabetta
    Benini, Luca
    Chiari, Lorenzo
    Vanzago, Laura
    MICROELECTRONICS JOURNAL, 2010, 41 (11) : 703 - 710
  • [37] Fall Detection Using Kinematic Features from a Wrist-Worn Inertial Sensor
    Dhinesh, R.
    Naheem, Minhas
    Khandelwal, Shubham
    Preejith, S. P.
    Joseph, Jayaraj
    Sivaprakasam, Mohanasankar
    2019 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2019,
  • [38] Fall Detection using Body Geometry in Video Sequences
    Romaissa, Beddiar Djamila
    Mourad, Oussalah
    Brahim, Nini
    Yazid, Bounab
    2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2020,
  • [39] A Skeleton Analysis Based Fall Detection Method Using ToF Camera
    Kong, Xiangbo
    Kumaki, Takeshi
    Meng, Lin
    Tomiyama, Hiroyuki
    2020 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI2020), 2021, 187 : 252 - 257
  • [40] Accurate Fall Detection Using 3-Axis Accelerometer Sensor And MLF Algorithm
    Jahanjoo, Anice
    Tahan, Marjan Naderan
    Rashti, Mohammad Javad
    2017 3RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (IPRIA), 2017, : 90 - 95