Acoustic wave propagation in anisotropic media with applications to piezoelectric materials

被引:0
作者
Stachura, Eric [1 ]
机构
[1] Kennesaw State Univ, Dept Math, Kennesaw, GA 30144 USA
关键词
Anisotropy; acoustics; piezoelectricity; stability; Cauchy problem; EQUATIONS;
D O I
10.1080/00036811.2020.1767286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze acoustic wave propagation in anisotropic fluids and solids. By formulating the acoustic system as an evolution equation over a Hilbert space, we obtain global in time solutions when the associated material parameters are bounded and measurable. In particular, we prove well-posedness of a Cauchy problem for wave propagation in piezoelectric crystals. We then provide a stability analysis of these solutions not assuming positive definiteness of the stress-strain tensor or the piezoelectric stress tensor. Finally we prove continuous dependence on initial data, allowing the piezoelectric tensor to depend on space and time, provided solutions belong to an appropriate function space.
引用
收藏
页码:994 / 1010
页数:17
相关论文
共 26 条
[1]   Calculation of Bulk Acoustic Wave Propagation Velocities in Trigonal Piezoelectric Smart Materials [J].
Abd-alla, Abo-el-Nour N. ;
Askar, Nadia A. .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04) :1625-1632
[2]  
Barles G., 1985, REMARKS FLAME PROPAG
[3]   SOME STABILITY THEOREMS FOR AN ABSTRACT EQUATION IN HILBERT-SPACE WITH APPLICATIONS TO LINEAR ELASTODYNAMICS [J].
BLOOM, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (02) :521-536
[4]  
Botkin N., 2014, System Modeling and Optimization. CSMO 2013. IFIP Advances in Information and Communication Technology, P36
[5]   Dispersion relations for acoustic waves in heterogeneous multi-layered structures contacting with fluids [J].
Botkin, N. D. ;
Hoffmann, K.-H. ;
Pykhteev, O. A. ;
Turova, V. L. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (05) :520-534
[6]  
BRILLOUIN L, 1938, TENSEURS MECANIQUE E
[7]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[8]  
Dineva P, 2014, DYNAMIC FRACTURE PIE, V10
[9]  
Engel KJ., 2000, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics
[10]   Envelopes and nonconvex Hamilton-Jacobi equations [J].
Evans, Lawrence C. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 50 (1-2) :257-282