Active Image Data Augmentation

被引:1
|
作者
Oliveira Santos, Flavio Arthur [1 ]
Zanchettin, Cleber [1 ]
Matos, Leonardo Nogueira [2 ]
Novais, Paulo [3 ]
机构
[1] Univ Fed Pernambuco, Recife, PE, Brazil
[2] Univ Fed Sergipe, Sao Cristovao, Brazil
[3] Univ Minho, Braga, Portugal
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2019 | 2019年 / 11734卷
关键词
Data augmentation; Robustness; Interpretability;
D O I
10.1007/978-3-030-29859-3_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks models have achieved state-of-the-art results in a great number of different tasks in different domains (e.g., natural language processing and computer vision). However, the notions of robustness, causality, and fairness are not measured in traditional evaluated settings. In this work, we proposed an active data augmentation method to improve the model robustness to new data. We use the Vanilla Backpropagation to visualize what the trained model consider important in the input information. Based on that information, we augment the training dataset with new data to refine the model training. The objective is to make the model robust and effective for important input information. We evaluated our approach in a Spinal Cord Gray Matter Segmentation task and verified improvement in robustness while keeping the model competitive in the traditional metrics. Besides, we achieve the state-of-the-art results on that task using a U-Net based model.
引用
收藏
页码:310 / 321
页数:12
相关论文
共 50 条
  • [1] DEEP ACTIVE LEARNING BASED ON SALIENCY-GUIDED DATA AUGMENTATION FOR IMAGE CLASSIFICATION
    Liu, Ying
    Pang, Yuliang
    Zhang, Weidong
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 815 - 819
  • [2] NeighborMix data augmentation for image recognition
    Feipeng Wang
    Kerong Ben
    Hu Peng
    Meini Yang
    Multimedia Tools and Applications, 2024, 83 : 26581 - 26598
  • [3] DATA AUGMENTATION VIA IMAGE REGISTRATION
    Nalepa, Jakub
    Mrukwa, Grzegorz
    Piechaczek, Szymon
    Lorenzo, Pablo Ribalta
    Marcinkiewicz, Michal
    Bobek-Billewicz, Barbara
    Wawrzyniak, Pawel
    Ulrych, Pawel
    Szymanek, Janusz
    Cwiek, Marcin
    Dudzik, Wojciech
    Kawulok, Michal
    Hayball, Michael P.
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4250 - 4254
  • [4] Feature transforms for image data augmentation
    Nanni, Loris
    Paci, Michelangelo
    Brahnam, Sheryl
    Lumini, Alessandra
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (24): : 22345 - 22356
  • [5] ADAPTIVE DATA AUGMENTATION FOR IMAGE CLASSIFICATION
    Fawzi, Alhussein
    Samulowitz, Horst
    Turaga, Deepak
    Frossard, Pascal
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3688 - 3692
  • [6] BitMix: data augmentation for image steganalysis
    Yu, I. -J.
    Ahn, W.
    Nam, S. -H.
    Lee, H. -K.
    ELECTRONICS LETTERS, 2020, 56 (24) : 1311 - 1314
  • [7] NeighborMix data augmentation for image recognition
    Wang, Feipeng
    Ben, Kerong
    Peng, Hu
    Yang, Meini
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 26581 - 26598
  • [8] DEEPFAKE Image Synthesis for Data Augmentation
    Waqas, Nawaf
    Safie, Sairul Izwan
    Kadir, Kushsairy Abdul
    Khan, Sheroz
    Khel, Muhammad Haris Kaka
    IEEE ACCESS, 2022, 10 : 80847 - 80857
  • [9] Feature transforms for image data augmentation
    Loris Nanni
    Michelangelo Paci
    Sheryl Brahnam
    Alessandra Lumini
    Neural Computing and Applications, 2022, 34 : 22345 - 22356
  • [10] On the Impact of Interpretability Methods in Active Image Augmentation Method
    Oliveira Santos, Flavio Arthur
    Zanchettin, Cleber
    Matos, Leonardo Nogueira
    Novais, Paulo
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (04) : 611 - 621