Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs

被引:89
作者
Okamoto, Sachiko [1 ]
Amaishi, Yasunori [1 ]
Maki, Izumi [1 ]
Enoki, Tatsuji [1 ]
Mineno, Junichi [1 ]
机构
[1] Takara Bio Inc, CDM Ctr, Nojihigashi 7-4-38, Kusatsu, Shiga 5250058, Japan
关键词
PLURIPOTENT STEM-CELLS; CRISPR-CAS9; GENERATION; OLIGONUCLEOTIDES; TRANSLATION; INITIATION;
D O I
10.1038/s41598-019-41121-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Target-specific genome editing using engineered nucleases has become widespread in various fields. Long gene knock-in and single-base substitutions can be performed by homologous recombination (HR), but the efficiency is usually very low. To improve the efficiency of knock-in with single-stranded oligo DNA nucleotides (ssODNs), we have investigated optimal design of ssODNs in terms of the blocking mutation, orientation, size, and length of homology arms to explore the optimal parameters of ssODN design using reporter systems for the detection of single-base substitutions. We have also investigated the difference in knock-in efficiency among the delivery forms and methods of Cas9 and sgRNA. The knock-in efficiencies for optimized ssODNs were much higher than those for ssODNs with no blocking mutation. We have also demonstrated that Cas9 protein/sgRNA ribonucleoprotein complexes (Cas9-RNPs) can dramatically reduce the re-cutting of the edited sites.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems [J].
Bialk, Pawel ;
Rivera-Torres, Natalia ;
Strouse, Bryan ;
Kmiec, Eric B. .
PLOS ONE, 2015, 10 (06)
[2]   Genome Editing in Human Stem Cells [J].
Byrne, Susan M. ;
Mali, Prashant ;
Church, George M. .
USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS, 2014, 546 :119-138
[3]   High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases [J].
Chen, Fuqiang ;
Pruett-Miller, Shondra M. ;
Huang, Yuping ;
Gjoka, Monika ;
Duda, Katarzyna ;
Taunton, Jack ;
Collingwood, Trevor N. ;
Frodin, Morten ;
Davis, Gregory D. .
NATURE METHODS, 2011, 8 (09) :753-U96
[4]   Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Jong Min ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :230-232
[5]  
Christie K., 2017, SCI REPORTS, V7, P1, DOI DOI 10.1038/s41598-016-0028-x
[6]   Enhanced Efficiency of Human Pluripotent Stem Cell Genome Editing through Replacing TALENs with CRISPRs [J].
Ding, Qiurong ;
Regan, Stephanie N. ;
Xia, Yulei ;
Oostrom, Leonie A. ;
Cowan, Chad A. ;
Musunuru, Kiran .
CELL STEM CELL, 2013, 12 (04) :393-394
[7]   New Frontier in Regenerative Medicine: Site-Specific Gene Correction in Patient-Specific Induced Pluripotent Stem Cells [J].
Garate, Zita ;
Davis, Brian R. ;
Quintana-Bustamante, Oscar ;
Segovia, Jose C. .
HUMAN GENE THERAPY, 2013, 24 (06) :571-583
[8]   DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break [J].
Harmsen, Tim ;
Klaasen, Sjoerd ;
van de Vrugt, Henri ;
te Riele, Hein .
NUCLEIC ACIDS RESEARCH, 2018, 46 (06) :2945-2955
[9]   Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells [J].
Hendel, Ayal ;
Bak, Rasmus O. ;
Clark, Joseph T. ;
Kennedy, Andrew B. ;
Ryan, Daniel E. ;
Roy, Subhadeep ;
Steinfeld, Israel ;
Lunstad, Benjamin D. ;
Kaiser, Robert J. ;
Wilkens, Alec B. ;
Bacchetta, Rosa ;
Tsalenko, Anya ;
Dellinger, Douglas ;
Bruhn, Laurakay ;
Porteus, Matthew H. .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :985-U232
[10]   Generation of an ICF Syndrome Model by Efficient Genome Editing of Human Induced Pluripotent Stem Cells Using the CRISPR System [J].
Horii, Takuro ;
Tamura, Daiki ;
Morita, Sumiyo ;
Kimura, Mika ;
Hatada, Izuho .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (10) :19774-19781