In the present study, the cutting performance of a CO2 laser on Kevlar-49 composite materials has been studied. The Taguchi technique is employed to identify the effect of laser control parameters, i.e., laser power, cutting speed, material thickness, assistance gas pressure, and laser mode, on the quality of cut parameters, namely, kerf width, dross height, and slope of the cut. From the analysis of variance (ANOVA) and signal-to-noise (S/N) ratio response tables, the significant parameters and the optimal combination levels of cutting parameters are determined. The obtained results are interpreted and modeled to closely understand the behavior and quality of CO2 laser cutting. Kevlar-49 composites are found to be cut satisfactorily by the CO2 laser at the optimum process parameter ranges. The results showed that laser power is the most significant parameter affecting the quality of cut parameters. The optimal combination of cutting parameters minimized the kerf width, dross height, and slope of cut to 0.103 mm, 0.101 mm, and 2.06A degrees, respectively. The error between experimental results with optimum settings and the predicted values for the kerf width, dross height, and slope of cut lie within 2.9%, 7.92%, and 6.3%, respectively.