Kinetic field theory: exact free evolution of Gaussian phase-space correlations

被引:11
作者
Fabis, Felix [1 ]
Kozlikin, Elena [1 ]
Lilow, Robert [1 ]
Bartelmann, Matthias [1 ]
机构
[1] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2018年
关键词
correlation functions; exact results; kinetic theory of gases and liquids; MATTER POWER SPECTRUM; LY-ALPHA FOREST; DARK; DYNAMICS;
D O I
10.1088/1742-5468/aab850
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In recent work we developed a description of cosmic large-scale structure formation in terms of non-equilibrium ensembles of classical particles, with time evolution obtained in the framework of a statistical field theory. In these works, the initial correlations between particles sampled from random Gaussian density and velocity fields have so far been treated perturbatively or restricted to pure momentum correlations. Here we treat the correlations between all phase-space coordinates exactly by adopting a diagrammatic language for the different forms of correlations, directly inspired by the Mayer cluster expansion. We will demonstrate that explicit expressions for phase-space density cumulants of arbitrary n-point order, which fully capture the non-linear coupling of free streaming kinematics due to initial correlations, can be obtained from a simple set of Feynman rules. These cumulants will be the foundation for future investigations of perturbation theory in particle interactions.
引用
收藏
页数:40
相关论文
共 30 条
  • [1] Planck 2015 results XVII. Constraints on primordial non-Gaussianity
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Arrojam, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [2] Perturbative interaction approach to cosmological structure formation
    Ali-Haimoud, Yacine
    [J]. PHYSICAL REVIEW D, 2015, 91 (10):
  • [3] [Anonymous], P INT SCH PHYS E FER
  • [4] Gravitational dynamics of an infinite shuffled lattice of particles
    Baertschiger, T.
    Joyce, M.
    Gabrielli, A.
    Labini, F. Sylos
    [J]. PHYSICAL REVIEW E, 2007, 75 (02)
  • [5] Gravitational dynamics of an infinite shuffled lattice: Particle coarse-graining, nonlinear clustering, and the continuum limit
    Baertschiger, T.
    [J]. PHYSICAL REVIEW E, 2007, 76 (01)
  • [6] Kinetic field theory: effects of momentum correlations on the cosmic density-fluctuation power spectrum
    Bartelmann, Matthias
    Fabis, Felix
    Kozlikin, Elena
    Lilow, Robert
    Dombrowski, Johannes
    Mildenberger, Julius
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [7] A microscopic, non-equilibrium, statistical field theory for cosmic structure formation
    Bartelmann, Matthias
    Fabis, Felix
    Berg, Daniel
    Kozlikin, Elena
    Lilow, Robert
    Viermann, Celia
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [8] Trajectories of point particles in cosmology and the Zel'dovich approximation
    Bartelmann, Matthias
    [J]. PHYSICAL REVIEW D, 2015, 91 (08)
  • [9] Becker R, 1985, HEIDELBERGER TASCHEN, V10
  • [10] Large-scale structure of the Universe and cosmological perturbation theory
    Bernardeau, F
    Colombi, S
    Gaztañaga, E
    Scoccimarro, R
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3): : 1 - 248