On Higher Genus Welschinger Invariants of del Pezzo Surfaces

被引:8
作者
Shustin, Eugenii [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
SYMPLECTIC; 4-MANIFOLDS; LOWER BOUNDS; CURVES; GEOMETRY;
D O I
10.1093/imrn/rnu148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Welschinger invariants of real rational algebraic surfaces count real rational curves that represent a given divisor class and pass through a generic conjugation-invariant configuration of points. No invariants counting real curves of positive genera are known in general. We indicate particular situations, when Welschinger-type invariants counting real curves of positive genera can be defined. We also prove the positivity and give asymptotic estimates for such Welschinger-type invariants for several del Pezzo surfaces of degree >= 2 and suitable real nef and big divisor classes. In particular, this yields the existence of real curves of given genus and of given divisor class passing through any appropriate configuration of real points on the given surface.
引用
收藏
页码:6907 / 6940
页数:34
相关论文
共 29 条
[1]  
Abramovich D., 2001, ADV ALGEBRAIC GEOMET, V276, P83
[2]   Recursive Formulas for Welschinger Invariants of the Projective Plane [J].
Arroyo, Aubin ;
Brugalle, Erwan ;
Lopez de Medrano, Lucia .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (05) :1107-1134
[3]  
Borel A., 1961, B SOC MATH FRANCE, V89, P461
[4]  
Brugalle E., 2014, ARXIV14045429
[5]   Behavior of Welschinger Invariants Under Morse Simplifications [J].
Brugalle, Erwan ;
Puignau, Nicolas .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2013, 130 :147-153
[6]   Counting plane curves of any genus [J].
Caporaso, L ;
Harris, J .
INVENTIONES MATHEMATICAE, 1998, 131 (02) :345-392
[7]  
Degtyarev A, 2002, J REINE ANGEW MATH, V551, P87
[8]   IDEALS ASSOCIATED TO DEFORMATIONS OF SINGULAR PLANE-CURVES [J].
DIAZ, S ;
HARRIS, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) :433-467
[9]  
Dolgachev I.V, 2013, CLASSICAL ALGEBRAIC
[10]  
Fulton W., 1997, P S PURE MATH, V62, P45