High thermoelectric performance in excitonic bilayer graphene

被引:6
作者
Apinyan, V [1 ]
Kopec, T. K. [1 ]
机构
[1] Polish Acad Sci, Inst Low Temp & Struct Res, POB 1410, PL-50950 Wroclaw 2, Poland
关键词
THERMAL-CONDUCTIVITY; TRANSPORT;
D O I
10.1016/j.physe.2020.114234
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We consider the excitonic effects on the thermal properties in the AB-stacked bilayer graphene. The calculations are based on the bilayer generalization of the usual Hubbard model at the half-filling. The full interaction bandwidth is used without any low-energy assumption. We obtain the unusually high values for the electronic figure of merit even at the room-temperatures which is very promising for the thermoelectric applications of the AB-bilayer structure. We discuss the effects of the interlayer Coulomb interaction and temperature on different thermal parameters in the bilayer graphene and we emphasize the role of the charge neutrality point in the thermal properties and within the excitonic insulator transition scenario. The calculated values of the rate of thermoelectric conversion efficiency suggest the possibility of high-performance device applications of AB-bilayer graphene.
引用
收藏
页数:16
相关论文
共 60 条
  • [1] Abrikosov A.A., 1975, METHODS QUANTUM FIEL
  • [2] Anomalous increase of the thermal emf in epitaxial graphene on size-quantized films
    Alisultanov, Z. Z.
    Mirzegasanova, N. A.
    [J]. LOW TEMPERATURE PHYSICS, 2014, 40 (05) : 458 - 461
  • [3] Excitonic Tunneling in the AB-bilayer Graphene Josephson Junctions
    Apinyan, V.
    Kopec, T. K.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 194 (3-4) : 325 - 359
  • [4] Spectral properties of excitons in the bilayer graphene
    Apinyan, V.
    Kopec, T. K.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 95 : 108 - 120
  • [5] Excitonic gap formation and condensation in the bilayer graphene structure
    Apinyan, V.
    Kopec, T. K.
    [J]. PHYSICA SCRIPTA, 2016, 91 (09)
  • [6] High energy shift in the optical conductivity spectrum of the bilayer graphene
    Apinyan, Vardan
    Kopec, Tadeusz K.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (12)
  • [7] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [8] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [9] Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
    Cai, Weiwei
    Moore, Arden L.
    Zhu, Yanwu
    Li, Xuesong
    Chen, Shanshan
    Shi, Li
    Ruoff, Rodney S.
    [J]. NANO LETTERS, 2010, 10 (05) : 1645 - 1651
  • [10] Enhanced thermal transport across multilayer graphene and water by interlayer functionalization
    Cao, Bing-Yang
    Zou, Ji-Hang
    Hu, Guo-Jie
    Cao, Gui-Xing
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (04)