Dark-Field Imaging: Recent developments and potential clinical applications

被引:24
作者
Ando, Masami [1 ]
Sunaguchi, Naoki [2 ]
Shimao, Daisuke [3 ]
Pan, Adam [4 ]
Yuasa, Tetsuya [5 ]
Mori, Kensaku [6 ]
Suzuki, Yoshifumi [7 ]
Jin, Ge [7 ]
Kim, Jong-Ki [8 ]
Lim, Jae-Hong [9 ]
Seo, Seung-Jun [8 ]
Ichihara, Shu [10 ]
Ohura, Norihiko [11 ]
Gupta, Rajiv [12 ,13 ]
机构
[1] Tokyo Univ Sci, Res Inst Sci & Engn, Noda, Chiba 2788510, Japan
[2] Gunma Univ, Grad Sch Engn, Kiryu, Gunma 3768515, Japan
[3] Hokkaido Univ Sci, Dept Radiol Technol, Sapporo, Hokkaido 0068585, Japan
[4] MIT, Dept Hlth Sci & Technol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Yamagata Univ, Grduate Sch Engn & Sci, Yonezawa, Yamagata 9928510, Japan
[6] Nagoya Univ, Grad Sch Informat Sci, Dept Media Sci, Nagoya, Aichi 4648601, Japan
[7] Kyushu Inst Technol, Grad Sch Engn, Kitakyushu, Fukuoka 8048550, Japan
[8] Catholic Univ Daegu, Sch Med, Biomed Engn & Radiol, Daegu 705034, South Korea
[9] Pohang Accelerator Lab, Ind Technol Convergence Ctr, Pohang 790834, Gyeongbuk, South Korea
[10] Nagoya Med Ctr, Dept Pathol, Clin Res Ctr, Nagoya, Aichi 4600001, Japan
[11] Kyorin Univ Hosp, Dept Plast Surg, Shinkawa 6-20-2, Mitaka, Tokyo 1810013, Japan
[12] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[13] Harvard Med Sch, Boston, MA 02114 USA
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2016年 / 32卷 / 12期
关键词
X-ray dynamical diffraction; Monochromator; Laue angle analyzer; Refraction contrast; Phase contrast; Medical imaging; Human soft tissue; Breast cancer; Articular cartilage; Artery damage; Synchrotron radiation; High contrast; High spatial resolution; PENDELLOSUNG FRINGES; DYNAMICAL THEORY; DIFFRACTION; RECONSTRUCTION; TOMOGRAPHY; TOMOSYNTHESIS;
D O I
10.1016/j.ejmp.2016.11.103
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This paper describes an X-ray phase contrast imaging technique using analyzer-based optics called X-ray Dark-Field Imaging that has been under development for the past 10 years. We describe the theory behind XDFI, the X-ray optics required for implementing it in practice, and algorithms used for 2D, 2.5D, and 3D image reconstruction. The XDFI optical chain consists of an asymmetrically cut, Bragg-type monochromator-collimator that provides a planar monochromatic X-ray beam, a positioning stage for the specimens, a Laue-case angle analyzer, and one or two cameras to capture the dark and bright field images. We demonstrate the soft-tissue discrimination capabilities of XDFI by reconstructing images with absorption and phase contrast. By using a variety of specimens such as breast tissue with cancer, joints with articular cartilage, ex-vivo human eye specimen, and others, we show that refraction-based contrast derived from XDFI is more effective in characterizing anatomical features, articular pathology, and neoplastic disease than conventional absorption-based images. For example, XDFI of breast tissue can discriminate between the normal and diseased terminal duct lobular unit, and between invasive and in-situ cancer. The final section of this paper is devoted to potential future developments to enable clinical and histo-pathological applications of this technique. (C) 2016 Published by Elsevier Ltd on behalf of Associazione Italiana di Fisica Medica.
引用
收藏
页码:1801 / 1812
页数:12
相关论文
共 44 条
[1]   Simple X-ray dark- and bright-field imaging using achromatic lane optics [J].
Ando, M ;
Maksimenko, A ;
Sugiyama, H ;
Pattanasiriwisawa, W ;
Hyodo, K ;
Uyama, C .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2002, 41 (9A-B) :L1016-L1018
[2]  
Ando M, 2013, EUR RADIOL, V23, P3021
[3]   Tissue Visualization Using X-Ray Dark-Field Imaging towards Pathological Goal [J].
Ando, Masami ;
Chikaura, Yoshinori ;
Endo, Tokiko ;
Gupta, Rajiv ;
Huo, Qingkai ;
Hyodo, Kazuyuki ;
Ichihara, Shu ;
Mori, Kensaku ;
Nakao, Yuki ;
Ohura, Norihiko ;
Sunaguchi, Naoki ;
Sugiyama, Hiroshi ;
Suzuki, Yoshifumi ;
Wu, Yanlin ;
Yuasa, Tetsuya ;
Zhang Xiaowei .
11TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION (SRI 2012), 2013, 425
[4]   AN X-RAY INTERFEROMETER [J].
BONSE, U ;
HART, M .
APPLIED PHYSICS LETTERS, 1965, 6 (08) :155-&
[5]   X-ray phase-contrast imaging: from pre-clinical applications towards clinics [J].
Bravin, Alberto ;
Coan, Paola ;
Suortti, Pekka .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (01) :R1-R35
[6]   Diffraction enhanced x-ray imaging [J].
Chapman, D ;
Thomlinson, W ;
Johnston, RE ;
Washburn, D ;
Pisano, E ;
Gmur, N ;
Zhong, Z ;
Menk, R ;
Arfelli, F ;
Sayers, D .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (11) :2015-2025
[7]   Hemorrhage in the atherosclerotic carotid plaque: A high-resolution MRI study [J].
Chu, BC ;
Kampschulte, A ;
Ferguson, MS ;
Kerwin, WS ;
Yarnykh, VL ;
O'Brien, KD ;
Polissar, NL ;
Hatsukami, TS ;
Yuan, C .
STROKE, 2004, 35 (05) :1079-1084
[8]   Differential x-ray phase contrast imaging using a shearing interferometer [J].
David, C ;
Nöhammer, B ;
Solak, HH ;
Ziegler, E .
APPLIED PHYSICS LETTERS, 2002, 81 (17) :3287-3289
[9]   Digital x-ray tomosynthesis: current state of the art and clinical potential [J].
Dobbins, JT ;
Godfrey, DJ .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (19) :R65-R106
[10]   X-ray phase-contrast tomography with a compact laser-driven synchrotron source [J].
Eggl, Elena ;
Schleede, Simone ;
Bech, Martin ;
Achterhold, Klaus ;
Loewen, Roderick ;
Ruth, Ronald D. ;
Pfeiffer, Franz .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (18) :5567-5572