Likelihood-based population independent component analysis

被引:13
作者
Eloyan, Ani [1 ]
Crainiceanu, Ciprian M. [1 ]
Caffo, Brian S. [1 ]
机构
[1] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
关键词
Functional MRI; Signal processing; Source separation; FUNCTIONAL MRI DATA; BLIND SEPARATION; FRAMEWORK; ALGORITHM;
D O I
10.1093/biostatistics/kxs055
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Independent component analysis (ICA) is a widely used technique for blind source separation, used heavily in several scientific research areas including acoustics, electrophysiology, and functional neuroimaging. We propose a scalable two-stage iterative true group ICA methodology for analyzing population level functional magnetic resonance imaging (fMRI) data where the number of subjects is very large. The method is based on likelihood estimators of the underlying source densities and the mixing matrix. As opposed to many commonly used group ICA algorithms, the proposed method does not require significant data reduction by a 2-fold singular value decomposition. In addition, the method can be applied to a large group of subjects since the memory requirements are not restrictive. The performance of our approach is compared with a commonly used group ICA algorithm via simulation studies. Furthermore, the proposed method is applied to a large collection of resting state fMRI datasets. The results show that established brain networks are well recovered by the proposed algorithm.
引用
收藏
页码:514 / 527
页数:14
相关论文
共 23 条
[1]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[2]   Large Sample Group Independent Component Analysis of Functional Magnetic Resonance Imaging Using Anatomical Atlas-Based Reduction and Bootstrapped Clustering [J].
Anderson, Ariana ;
Bramen, Jennifer ;
Douglas, Pamela K. ;
Lenartowicz, Agatha ;
Cho, Andrew ;
Culbertson, Chris ;
Brody, Arthur L. ;
Yuille, Alan L. ;
Cohen, Mark S. .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2011, 21 (02) :223-231
[3]  
[Anonymous], 1962, Modern factor analysis
[4]   Tensorial extensions of independent component analysis for multisubject FMRI analysis [J].
Beckmann, CF ;
Smith, SM .
NEUROIMAGE, 2005, 25 (01) :294-311
[5]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[6]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[7]   Independent component analysis based on nonparametric density estimation [J].
Boscolo, R ;
Pan, H ;
Roychowdhury, VP .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (01) :55-65
[8]   Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 13 (01) :43-53
[9]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[10]  
CARDOSO JF, 1990, INT CONF ACOUST SPEE, P2655, DOI 10.1109/ICASSP.1990.116165