A tight-binding model for MoS2 monolayers

被引:91
作者
Ridolfi, E. [1 ]
Le, D. [2 ]
Rahman, T. S. [2 ]
Mucciolo, E. R. [2 ]
Lewenkopf, C. H. [1 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
[2] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
关键词
MoS2; band structure; tight-binding model; transition metal dichalcogenides; TRANSITION-METAL DICHALCOGENIDES; SINGLE-LAYER MOS2; BAND-STRUCTURES; PHOTOLUMINESCENCE; SEMICONDUCTORS; STATES; GAP;
D O I
10.1088/0953-8984/27/36/365501
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We propose an accurate tight-binding parametrization for the band structure of MoS2 monolayers near the main energy gap. We introduce a generic and straightforward derivation for the band energies equations that could be employed for other monolayer dichalcogenides. A parametrization that includes spin-orbit coupling is also provided. The proposed set of model parameters reproduce both the correct orbital compositions and location of valence and conductance band in comparison with ab initio calculations. The model gives a suitable starting point for realistic large-scale atomistic electronic transport calculations.
引用
收藏
页数:21
相关论文
共 46 条
[1]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[2]   BAND STRUCTURES OF SOME TRANSITION-METAL DICHALCOGENIDES .3. GROUP VI A - TRIGONAL PRISM MATERIALS [J].
BROMLEY, RA ;
YOFFE, AD ;
MURRAY, RB .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (07) :759-&
[3]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[4]   Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2 [J].
Cappelluti, E. ;
Roldan, R. ;
Silva-Guillen, J. A. ;
Ordejon, P. ;
Guinea, F. .
PHYSICAL REVIEW B, 2013, 88 (07)
[5]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[6]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[7]   Large conduction band and Fermi velocity spin splitting due to Coulomb interactions in single-layer MoS2 [J].
Ferreiros, Yago ;
Cortijo, Alberto .
PHYSICAL REVIEW B, 2014, 90 (19)
[8]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[9]   Hybrid functionals based on a screened Coulomb potential [J].
Heyd, J ;
Scuseria, GE ;
Ernzerhof, M .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18) :8207-8215
[10]   Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy [J].
Hill, Heather M. ;
Rigosi, Albert F. ;
Roquelet, Cyrielle ;
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2015, 15 (05) :2992-2997