Adaptive control and synchronization of a fractional-order chaotic system

被引:33
作者
Li, Chunlai [1 ]
Tong, Yaonan [2 ]
机构
[1] Hunan Inst Sci & Technol, Coll Phys & Elect, Yueyang 414006, Peoples R China
[2] Hunan Inst Sci & Technol, Sch Informat & Commun Engn, Yueyang 414006, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2013年 / 80卷 / 04期
关键词
Fractional order; adaptive scheme; control; synchronization; HYPERCHAOS; EQUATIONS;
D O I
10.1007/s12043-012-0500-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the chaotic dynamics of a three-dimensional fractional-order chaotic system is investigated. The lowest order for exhibiting chaos in the fractional-order system is obtained. Adaptive schemes are proposed for control and synchronization of the fractional-order chaotic system based on the stability theory of fractional-order dynamic systems. The presented schemes, which contain only a single-state variable, are simple and flexible. Numerical simulations are used to demonstrate the feasibility of the presented methods.
引用
收藏
页码:583 / 592
页数:10
相关论文
共 31 条
[1]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[2]  
Arena P, 2000, NONLINEAR NONINTEGER
[3]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[4]  
BUTZER P., 2000, INTRO FRACTIONAL CAL
[5]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[6]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[7]   Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao .
PHYSICS LETTERS A, 2011, 375 (21) :2099-2110
[8]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[9]   On the fractional-order logistic equation [J].
El-Sayed, A. M. A. ;
El-Mesiry, A. E. M. ;
El-Saka, H. A. A. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (07) :817-823
[10]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490