An age-structured model for cholera control with vaccination

被引:42
作者
Cai, Li-Ming [1 ]
Modnak, Chairat [2 ]
Wang, Jin [3 ]
机构
[1] Xinyang Normal Univ, Dept Math, Xinyang 464000, Peoples R China
[2] Naresuan Univ, Dept Math, Fac Sci, Phitsanulok 65000, Thailand
[3] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Cholera model; Age-structure; Stability; Optimal vaccination strategies; GLOBAL STABILITY; TRANSMISSION DYNAMICS; INFECTIOUS-DISEASES; EPIDEMIC CHOLERA; STRATEGIES; HAITI; INTERVENTIONS;
D O I
10.1016/j.amc.2016.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate an age-structured cholera model with four partial differential equations describing the transmission dynamics of human hosts and one ordinary differential equation representing the bacterial evolution in the environment. We conduct rigorous analysis on the trivial (disease-free) and non-trivial (endemic) equilibria of the system, and establish their existence, uniqueness, and stability where possible. Meanwhile, we perform an optimal control study for the age-structured model and seek effective vaccination strategies that best balance the outcome of vaccination in reducing cholera infection and the associated costs. Our modeling, analysis and simulation emphasize the complex interplay among the environmental pathogen, the human hosts with explicit age structure, and the age dependent vaccination as a disease control measure. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:127 / 140
页数:14
相关论文
共 41 条
[1]   An age-structured model for the spread of epidemic cholera: Analysis and simulation [J].
Alexanderian, Alen ;
Gobbert, Matthias K. ;
Fister, K. Renee ;
Gaff, Holly ;
Lenhart, Suzanne ;
Schaefer, Elsa .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :3483-3498
[2]   Transmission dynamics and control of cholera in Haiti: an epidemic model [J].
Andrews, Jason R. ;
Basu, Sanjay .
LANCET, 2011, 377 (9773) :1248-1255
[3]  
[Anonymous], 2010, Wkly Epidemiol Rec, V85, P117
[4]  
[Anonymous], 1995, APPL MATH MONOGRAPHS
[5]  
Barbu V., 1994, MATH METHODS OPTIMIZ
[6]   DYNAMICS OF AN AGE-OF-INFECTION CHOLERA MODEL [J].
Brauer, Fred ;
Shuai, Zhisheng ;
van den Driessche, P. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2013, 10 (5-6) :1335-1349
[7]  
CAPASSO V, 1979, REV EPIDEMIOL SANTE, V27, P121
[8]   Global stability of an age-structure model for TB and its applications to optimal vaccination strategies [J].
Castillo-Chavez, C ;
Feng, ZL .
MATHEMATICAL BIOSCIENCES, 1998, 151 (02) :135-154
[9]   EPIDEMIOLOGICAL MODELS WITH AGE STRUCTURE, PROPORTIONATE MIXING, AND CROSS-IMMUNITY [J].
CASTILLOCHAVEZ, C ;
HETHCOTE, HW ;
ANDREASEN, V ;
LEVIN, SA ;
LIU, WM .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (03) :233-258
[10]   Vaccination strategies for epidemic cholera in Haiti with implications for the developing world [J].
Chao, Dennis L. ;
Halloran, M. Elizabeth ;
Longini, Ira M., Jr. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (17) :7081-7085