Equivalent projectors for virtual element methods

被引:447
作者
Ahmad, B. [1 ]
Alsaedi, A. [1 ]
Brezzi, F. [1 ,2 ,3 ]
Marini, L. D. [3 ,4 ]
Russo, A. [3 ,5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] IUSS, I-27100 Pavia, Italy
[3] CNR, IMATI, I-27100 Pavia, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[5] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, Italy
关键词
Virtual elements; Mimetic finite differences; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; MIMETIC DISCRETIZATIONS; CONVERGENCE ANALYSIS;
D O I
10.1016/j.camwa.2013.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the original virtual element space with degree of accuracy k, projector operators in the H-1-seminorm onto polynomials of degree <= k can be easily computed. On the other hand, projections in the L-2 norm are available only on polynomials of degree <= k - 2 (directly from the degrees of freedom). Here, we present a variant of the virtual element method that allows the exact computations of the L-2 projections on all polynomials of degree <= k. The interest of this construction is illustrated with some simple examples, including the construction of three-dimensional virtual elements, the treatment of lower-order terms, the treatment of the right-hand side, and the L-2 error estimates. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 391
页数:16
相关论文
共 33 条
[21]   A HIGHER-ORDER FORMULATION OF THE MIMETIC FINITE DIFFERENCE METHOD [J].
da Veiga, Lourenco Beirao ;
Manzini, Gianmarco .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :732-760
[22]   A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS [J].
Droniou, Jerome ;
Eymard, Robert ;
Gallouet, Thierry ;
Herbin, Raphaele .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (02) :265-295
[23]   Supernatural QUAD4: A template formulation [J].
Felippa, Carlos A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5316-5342
[24]   The extended/generalized finite element method: An overview of the method and its applications [J].
Fries, Thomas-Peter ;
Belytschko, Ted .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (03) :253-304
[25]   High-order mimetic finite difference method for diffusion problems on polygonal meshes [J].
Gyrya, Vitaliy ;
Lipnikov, Konstantin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (20) :8841-8854
[26]  
Hyman J., 2001, PIER, V32, P89
[27]   The orthogonal decomposition theorems for mimetic finite difference methods [J].
Hyman, JM ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :788-818
[28]  
Kuznetsov Y, 2003, RUSS J NUMER ANAL M, V18, P261, DOI 10.1515/156939803322380846
[29]   Solving diffusion equations with rough coefficients in rough grids [J].
Shashkov, M ;
Steinberg, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 129 (02) :383-405
[30]   Conforming polygonal finite elements [J].
Sukumar, N ;
Tabarraei, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (12) :2045-2066