Equivalent projectors for virtual element methods

被引:447
作者
Ahmad, B. [1 ]
Alsaedi, A. [1 ]
Brezzi, F. [1 ,2 ,3 ]
Marini, L. D. [3 ,4 ]
Russo, A. [3 ,5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] IUSS, I-27100 Pavia, Italy
[3] CNR, IMATI, I-27100 Pavia, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[5] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, Italy
关键词
Virtual elements; Mimetic finite differences; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; MIMETIC DISCRETIZATIONS; CONVERGENCE ANALYSIS;
D O I
10.1016/j.camwa.2013.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the original virtual element space with degree of accuracy k, projector operators in the H-1-seminorm onto polynomials of degree <= k can be easily computed. On the other hand, projections in the L-2 norm are available only on polynomials of degree <= k - 2 (directly from the degrees of freedom). Here, we present a variant of the virtual element method that allows the exact computations of the L-2 projections on all polynomials of degree <= k. The interest of this construction is illustrated with some simple examples, including the construction of three-dimensional virtual elements, the treatment of lower-order terms, the treatment of the right-hand side, and the L-2 error estimates. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 391
页数:16
相关论文
共 33 条
[11]   A tensor artificial viscosity using a mimetic finite difference algorithm [J].
Campbell, JC ;
Shashkov, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (02) :739-765
[12]   Flux reconstruction and solution post-processing in mimetic finite difference methods [J].
Cangiani, Andrea ;
Manzini, Gianmarco .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (9-12) :933-945
[13]   CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS [J].
Cangiani, Andrea ;
Manzini, Gianmarco ;
Russo, Alessandro .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2612-2637
[14]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[15]   A residual based error estimator for the Mimetic Finite Difference method [J].
da Veiga, L. Beirao .
NUMERISCHE MATHEMATIK, 2008, 108 (03) :387-406
[16]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214
[17]   VIRTUAL ELEMENTS FOR LINEAR ELASTICITY PROBLEMS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Marini, L. D. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) :794-812
[18]   ARBITRARY-ORDER NODAL MIMETIC DISCRETIZATIONS OF ELLIPTIC PROBLEMS ON POLYGONAL MESHES [J].
Da Veiga, L. Beirao ;
Lipnikov, K. ;
Manzini, G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) :1737-1760
[19]   Convergence analysis of the high-order mimetic finite difference method [J].
da Veiga, L. Beirao ;
Lipnikov, K. ;
Manzini, G. .
NUMERISCHE MATHEMATIK, 2009, 113 (03) :325-356
[20]   A MIMETIC DISCRETIZATION METHOD FOR LINEAR ELASTICITY [J].
Da Veiga, Lourenco Beirao .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (02) :231-250