Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

被引:29
作者
Langer, Andreas [1 ,2 ]
Schraeml, Michael [3 ]
Strasser, Ralf [1 ]
Daub, Herwin [1 ,2 ]
Myers, Thomas [4 ]
Heindl, Dieter [3 ]
Rant, Ulrich [1 ]
机构
[1] Dynam Biosensors GmbH, D-82152 Martinsried, Germany
[2] Tech Univ Munich, D-85748 Garching, Germany
[3] Roche Diagnost GmbH, D-82377 Penzberg, Germany
[4] Roche Mol Syst Inc, Pleasanton, CA 94588 USA
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
AQUATICUS DNA-POLYMERASE; THERMUS-AQUATICUS; KINETIC MECHANISM; KLENOW FRAGMENT; REAL-TIME; NUCLEOTIDE INCORPORATION; FLUORESCENCE; BINDING; ASSAY; FIDELITY;
D O I
10.1038/srep12066
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.
引用
收藏
页数:15
相关论文
共 53 条
[21]   Thermodynamic parameters of specific and nonspecific protein-DNA binding [J].
Jen-Jacobson, L ;
Engler, LE ;
Ames, JT ;
Kurpiewski, MR ;
Grigorescu, A .
SUPRAMOLECULAR CHEMISTRY, 2000, 12 (02) :143-+
[22]  
JOHNSON KA, 1995, METHOD ENZYMOL, V249, P38
[23]   The kinetic and chemical mechanism of high-fidelity DNA polymerases [J].
Johnson, Kenneth A. .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (05) :1041-1048
[24]   Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations [J].
Johnson, SJ ;
Taylor, JS ;
Beese, LS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3895-3900
[25]   Binding Kinetics and Activity of Human Poly(ADP-ribose) Polymerase-1 on Oligo-Deoxyribonucleotide Substrates [J].
Jorgensen, Timothy J. ;
Chen, Kevin ;
Chasovskikh, Sergey ;
Roy, Rabindra ;
Dritschilo, Anatoly ;
Uren, Aykut .
JOURNAL OF MOLECULAR RECOGNITION, 2009, 22 (06) :446-452
[26]   Techniques used to study the DNA polymerase reaction pathway [J].
Joyce, Catherine M. .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (05) :1032-1040
[27]   Conformations of End-Tethered DNA Molecules on Gold Surfaces: Influences of Applied Electric Potential, Electrolyte Screening, and Temperature [J].
Kaiser, Wolfgang ;
Rant, Ulrich .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (23) :7935-7945
[28]   Real-time detection of nucleotide incorporation during complementary DNA strand synthesis [J].
Krieg, A ;
Laib, S ;
Ruckstuhl, T ;
Seeger, S .
CHEMBIOCHEM, 2003, 4 (07) :589-592
[29]   KINETIC MECHANISM OF DNA-POLYMERASE-I (KLENOW) [J].
KUCHTA, RD ;
MIZRAHI, V ;
BENKOVIC, PA ;
JOHNSON, KA ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1987, 26 (25) :8410-8417
[30]   KINETIC MECHANISM WHEREBY DNA-POLYMERASE-I (KLENOW) REPLICATES DNA WITH HIGH FIDELITY [J].
KUCHTA, RD ;
BENKOVIC, P ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1988, 27 (18) :6716-6725