A bistable electromagnetic energy harvester for low-frequency, low-amplitude excitation

被引:11
|
作者
Abdelnaby, Mohammed Ali [1 ]
Arafa, Mustafa [2 ]
机构
[1] Akhbar Elyom Acad, Dept Prod Engn & Printing Technol, Cairo, Egypt
[2] Amer Univ Cairo, Mech Engn Dept, Cairo, Egypt
关键词
Bistable; Energy harvesting; Low-frequency; Low-amplitude;
D O I
10.1007/s40430-020-02607-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we propose a bistable vibration energy harvester that can be used for non-resonant low-frequency, low-amplitude excitation. The design exploits magnetic bistability created between a pair of repelling magnets. Unlike base-excited beams, our design relies on placing one magnet on the tip of a cantilever beam having a fixed base, while transversely moving an opposite magnet thereby displacing the beam across its two stable positions with an amplified motion to harvest greater amounts of power by electromagnetic induction. A theoretical model is developed to simulate the dynamic behavior of the system at different excitation frequencies, amplitudes and magnetic gaps in order to assess the effect of the design parameters on the performance. It was found that the proposed design is beneficial and outperforms conventional linear oscillators for a broad range of frequencies, except at the linear resonance frequency. The results are supported experimentally over a range of load resistance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A bistable electromagnetic energy harvester for low-frequency, low-amplitude excitation
    Mohammed Ali Abdelnaby
    Mustafa Arafa
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [2] A stiffness compensated piezoelectric energy harvester for low-frequency excitation
    van de Wetering, E.
    Blad, T. W. A.
    van Ostayen, R. A. J.
    SMART MATERIALS AND STRUCTURES, 2021, 30 (11)
  • [3] Oscillatory magnetic piezoelectric nanogenerators under low-frequency and low-amplitude excitations
    Jiao, Pengcheng
    Egbe, King-James I.
    Nazar, Ali Matin
    Yang, Yang
    Wang, Haipeng
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [4] Design of a Lightweight Quasi-zero Stiffness Electromagnetic Energy Harvester for Low-Frequency Vibration
    Yang Zhang
    Xi Wang
    Qianzheng Du
    Tao Wang
    Guoqiang Fu
    Caijiang Lu
    Journal of Vibration Engineering & Technologies, 2024, 12 : 1979 - 1989
  • [5] Design of a Lightweight Quasi-zero Stiffness Electromagnetic Energy Harvester for Low-Frequency Vibration
    Zhang, Yang
    Wang, Xi
    Du, Qianzheng
    Wang, Tao
    Fu, Guoqiang
    Lu, Caijiang
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (02) : 1979 - 1989
  • [6] An efficient low-frequency acoustic energy harvester
    Yuan, Ming
    Cao, Ziping
    Luo, Jun
    Zhang, Jinya
    Chang, Cheng
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 264 : 84 - 89
  • [7] Design and performance study of low frequency magnetic coupling bistable piezoelectric and electromagnetic energy harvester
    Wang, Hu
    Zhao, Qingling
    Song, Rujun
    Guo, Junlong
    Chang, Wenyan
    Yang, Xiaohui
    Zhang, Leian
    ENERGY, 2025, 320
  • [8] A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester
    He, Xianming
    Wen, Quan
    Sun, Yafeng
    Wen, Zhiyu
    NANO ENERGY, 2017, 40 : 300 - 307
  • [9] An Electrically Tunable Low Frequency Electromagnetic Energy Harvester
    Mallick, Dhiman
    Roy, Saibal
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 771 - 774
  • [10] A low-frequency vibration-to-electrical energy harvester
    Zhang, Min
    Brignac, Daniel
    Ajmera, Pratul
    Lian, Kun
    NANOSENSORS AND MICROSENSORS FOR BIO-SYSTEMS 2008, 2008, 6931