Some New Iterated Hardy-Type Inequalities

被引:32
作者
Gogatishvili, A. [2 ]
Mustafayev, R. Ch [3 ,4 ]
Persson, L-E [1 ,5 ]
机构
[1] Lulea Univ Technol, Dept Math, S-97187 Lulea, Sweden
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Azerbaijan Acad Sci, Inst Math & Mech, Baku 1141, Azerbaijan
[4] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
[5] Narvik Univ Coll, N-8505 Narvik, Norway
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2012年
关键词
WEIGHTED INEQUALITIES; EMBEDDINGS;
D O I
10.1155/2012/734194
中图分类号
学科分类号
摘要
We characterize the validity of the Hardy-type inequality parallel to parallel to integral(infinity)(s) h(z)dz parallel to(p,u,(0,t)) parallel to(q,w,(0,infinity)) <= c parallel to h parallel to(theta,v(0,infinity)), where 0 < p < infinity, 0 < q <= infinity, 1 < theta = infinity, u, w, and v are weight functions on (0,infinity). Some fairly new discretizing and antidiscretizing techniques of independent interest are used.
引用
收藏
页数:30
相关论文
共 14 条
[11]   The weighted hardy inequality: New proofs and the case p=1 [J].
Sinnamon, G ;
Stepanov, VD .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :89-101
[12]   A NOTE ON THE STIELTJES TRANSFORMATION [J].
SINNAMON, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 110 :73-78
[13]   A WEIGHTED GRADIENT INEQUALITY [J].
SINNAMON, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 111 :329-335
[14]  
Sinnamon G, 1987, THESIS MCMASTER U