Some New Iterated Hardy-Type Inequalities

被引:32
作者
Gogatishvili, A. [2 ]
Mustafayev, R. Ch [3 ,4 ]
Persson, L-E [1 ,5 ]
机构
[1] Lulea Univ Technol, Dept Math, S-97187 Lulea, Sweden
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Azerbaijan Acad Sci, Inst Math & Mech, Baku 1141, Azerbaijan
[4] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
[5] Narvik Univ Coll, N-8505 Narvik, Norway
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2012年
关键词
WEIGHTED INEQUALITIES; EMBEDDINGS;
D O I
10.1155/2012/734194
中图分类号
学科分类号
摘要
We characterize the validity of the Hardy-type inequality parallel to parallel to integral(infinity)(s) h(z)dz parallel to(p,u,(0,t)) parallel to(q,w,(0,infinity)) <= c parallel to h parallel to(theta,v(0,infinity)), where 0 < p < infinity, 0 < q <= infinity, 1 < theta = infinity, u, w, and v are weight functions on (0,infinity). Some fairly new discretizing and antidiscretizing techniques of independent interest are used.
引用
收藏
页数:30
相关论文
共 14 条
[2]  
[Anonymous], 1985, SOBOLEV INEQUALITIES
[3]  
EVANS W. D., 2009, INT SER NUMER MATH, V157, P121
[4]   Characterisation of embeddings in Lorentz spaces [J].
Gogatishvili, A. ;
Johansson, M. ;
Okpoti, C. A. ;
Persson, L.-E. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (01) :69-92
[5]   Embeddings and duality theorems for weak classical Lorentz spaces [J].
Gogatishvili, A ;
Pick, L .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (01) :82-95
[6]   Discretization and anti-discretization of rearrangement-invariant norms [J].
Gogatishvili, A ;
Pick, L .
PUBLICACIONS MATEMATIQUES, 2003, 47 (02) :311-358
[7]  
Gogatishvili A, 2002, P AUT C MATH SOC JAP, P63
[8]  
Gogatishvili A, 2006, COLLECT MATH, V57, P227
[9]  
Opic B., 1990, PITMAN RES NOTES MAT, V219
[10]  
Persson L.E., 2003, WEIGHTED INEQUALITIE