A Korovkin-type theory for non-self-adjoint Toeplitz operators

被引:5
作者
Kumar, V. B. Kiran [1 ]
Namboodiri, M. N. N. [1 ]
Rajan, Rahul [1 ]
机构
[1] Cochin Univ Sci & Technol, Dept Math, Cochin, Kerala, India
关键词
Preconditioners; C*-algebra; Korovkin-type theorems;
D O I
10.1016/j.laa.2017.12.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Frobenius optimal preconditioners for Toeplitz operators with complex-valued symbols. We prove Korovkin-type theorems for C*-algebra generated by complex valued continuous periodic symbols corresponding to Toeplitz operators under various modes of convergence in eigenvalue cluster sense. This generalizes the existing results for C*-algebra generated by real-valued symbols. In some special cases, the optimal preconditioners can be chosen from matrix algebras with faster convergence rate for the corresponding preconditioned linear systems. We will also consider the linear positive operators associated with the eigenvalues of these preconditioners and obtain a Korovkin-type theorem for such operators as an application of our results. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:140 / 161
页数:22
相关论文
共 18 条
[1]  
[Anonymous], 2013, Matrix Analysis
[2]  
[Anonymous], 1955, PAC J MATH, DOI DOI 10.2140/PJM.1955.5.911
[3]   Approximation of approximation numbers by truncation [J].
Böttcher, A ;
Chithra, AV ;
Namboodiri, MNN .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 39 (04) :387-395
[4]  
Brown A., 1964, J. Reine. Angew. Math, V213, P89
[5]   Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices [J].
Capizzano, SS ;
Tilli, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 108 (1-2) :113-130
[6]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771
[7]   A unifying approach to abstract matrix algebra preconditioning [J].
Di Benedetto, F ;
Capizzano, SS .
NUMERISCHE MATHEMATIK, 1999, 82 (01) :57-90
[8]  
Henk A. van der Vorst, 2009, CAMBRIDGE MONOGRAPHS, V13
[9]   Preconditioning strategies for non-Hermitian Toeplitz linear systems [J].
Huckle, T ;
Serra-Capizzano, S ;
Tablino-Possio, C .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) :211-220
[10]  
KOROVKIN P. P., 2017, Linear Operators and Approximation Theory