Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils

被引:11
|
作者
Dong, Bing [1 ,2 ]
Booth, Martin J. [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Optoelect, Beijing 100081, Peoples R China
[2] Univ Oxford, Ctr Neural Circuits & Behav, Mansfield Rd, Oxford OX1 3SR, England
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
来源
OPTICS EXPRESS | 2018年 / 26卷 / 02期
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
OPTICAL MICROSCOPY; DEFORMABLE MIRRORS; RECONSTRUCTION; ALGORITHM; ABERRATIONS; SYSTEM;
D O I
10.1364/OE.26.001655
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1655 / 1669
页数:15
相关论文
共 50 条
  • [41] Lensless Refractive Measurement System Based on Shack-Hartmann Wavefront Detection
    Geng, Kangjie
    Zhang, Hetong
    Ding, Shangshang
    Zhang, Yang
    Min, Liu
    Fu, Weiwei
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (03):
  • [42] Optimal noise-weighted reconstruction with elongated Shack-Hartmann wavefront sensor images for laser tomography adaptive optics
    Clare, Richard M.
    Le Louarn, Miska
    Bechet, Clementine
    APPLIED OPTICS, 2010, 49 (31) : G27 - G36
  • [43] Improving sub-pixel shifts estimation in a Shack-Hartmann wavefront sensor
    Popowicz, Adam
    OPTICS LETTERS, 2019, 44 (10) : 2602 - 2604
  • [44] Frozen-flow atmosphere wind velocity estimation using a Shack-Hartmann wavefront sensor
    Ren, Zhilei
    Chen, Zhitao
    Liu, Jin
    Liang, Yonghui
    SIXTH SYMPOSIUM ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2020, 11455
  • [45] Wavefront sensing for a Shack-Hartmann sensor using phase retrieval based on a sequence of intensity patterns
    Yazdani, Roghayeh
    Fallah, Hamidreza
    APPLIED OPTICS, 2017, 56 (05) : 1358 - 1364
  • [46] Tolerance analysis of misalignment in an optical system using Shack-Hartmann wavefront sensor: experimental study
    Kalikivayi, Venkataramana
    Kumar, Valiyaparambil Chacko Pretheesh
    Kannan, Krithivasan
    Ganesan, Angarai Ramanathan
    OPTICAL ENGINEERING, 2015, 54 (07)
  • [47] Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars
    Tao, Xiaodong
    Dean, Ziah
    Chien, Christopher
    Azucena, Oscar
    Bodington, Dare
    Kubby, Joel
    OPTICS EXPRESS, 2013, 21 (25): : 31282 - 31292
  • [48] Mitigation of truncation effects in elongated Shack-Hartmann laser guide star wavefront sensor images
    Clare, Richard M.
    Weddell, Stephen J.
    Le Louarn, Miska
    APPLIED OPTICS, 2020, 59 (22) : 6431 - 6442
  • [49] Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering
    Wang, Shuai
    Yang, Ping
    Xu, Bing
    Dong, Lizhi
    Ao, Mingwu
    OPTICS EXPRESS, 2015, 23 (04): : 5052 - 5063
  • [50] Multi-layer Shack-Hartmann wavefront sensing in the point source regime
    Akondi, Vyas
    Dubra, Alfredo
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (01) : 409 - 432