Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils

被引:11
|
作者
Dong, Bing [1 ,2 ]
Booth, Martin J. [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Optoelect, Beijing 100081, Peoples R China
[2] Univ Oxford, Ctr Neural Circuits & Behav, Mansfield Rd, Oxford OX1 3SR, England
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
来源
OPTICS EXPRESS | 2018年 / 26卷 / 02期
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
OPTICAL MICROSCOPY; DEFORMABLE MIRRORS; RECONSTRUCTION; ALGORITHM; ABERRATIONS; SYSTEM;
D O I
10.1364/OE.26.001655
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1655 / 1669
页数:15
相关论文
共 50 条
  • [31] Deep learning assisted Shack-Hartmann wavefront sensor for direct wavefront detection
    Hu, Lejia
    Hu, Shuwen
    Gong, Wei
    Si, Ke
    OPTICS LETTERS, 2020, 45 (13) : 3741 - 3744
  • [32] Accounting for Polychromatic Light in Virtual Shack-Hartmann Wavefront Sensing
    Yue, Xian
    Yang, Yaliang
    Dai, Hao
    Chen, Shen
    Geng, Chao
    Zhang, Yudong
    PHOTONIC SENSORS, 2023, 13 (03)
  • [33] Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor
    Murphy, Kevin
    Burke, Daniel
    Devaney, Nicholas
    Dainty, Chris
    OPTICS EXPRESS, 2010, 18 (15): : 15448 - 15460
  • [34] Wavefront Reconstruction of Shack-Hartmann with Under-Sampling of Sub-Apertures
    Huang, Jian
    Yao, Lianqun
    Wu, Shuyun
    Wang, Gongchang
    PHOTONICS, 2023, 10 (01)
  • [35] Zonal shape reconstruction for Shack-Hartmann sensors and deflectometry
    Hugo, Jonquiere
    Laurent, M. Mugnier
    Vincent, Michau
    Renaud, Mercier-Ythier
    OPTICS AND LASERS IN ENGINEERING, 2025, 184
  • [36] Implementing a Hybrid Method for Shack-Hartmann Wavefront Spots Labeling on FPGA
    Abdullah, Ammar
    Brady, Aoife
    Heinig, Daniel
    Krause, Peter
    Goy, Matthias
    Doege, Klaus-Peter
    Tuennermann, Andreas
    ELECTRONICS, 2024, 13 (07)
  • [37] Wavefront sensing using deep learning for Shack Hartmann and pyramidal sensors
    Escobar, David
    Vera, Esteban
    2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (IEEE CHILECON 2021), 2021, : 733 - 737
  • [38] Performance of a Shack-Hartmann Wavefront sensor using real sodium laser data.
    Thomas, Sandrine J.
    Gavel, Donald
    Muller, Nicolas
    Michau, Vincent
    Fusco, Thierry
    ADAPTIVE OPTICS SYSTEMS II, 2010, 7736
  • [39] Objective quantification and spatial mapping of cataract with a Shack-Hartmann wavefront sensor
    Hollo, Csaba Tamas
    Mihaltz, Kata
    Kurucz, Mate
    Csorba, Anita
    Kranitz, Kinga
    Kovacs, Illes
    Nagy, Zoltan Zsolt
    Erdei, Gabor
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [40] Comparison of branch-point detection approaches using a Shack-Hartmann wavefront sensor
    Kalensky, Matthew
    Oesch, Denis W.
    Bukowski, Timothy J.
    Miller, Kelsey
    Getts, Darren
    OPTICAL ENGINEERING, 2023, 62 (12)