Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils

被引:11
|
作者
Dong, Bing [1 ,2 ]
Booth, Martin J. [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Optoelect, Beijing 100081, Peoples R China
[2] Univ Oxford, Ctr Neural Circuits & Behav, Mansfield Rd, Oxford OX1 3SR, England
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
来源
OPTICS EXPRESS | 2018年 / 26卷 / 02期
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
OPTICAL MICROSCOPY; DEFORMABLE MIRRORS; RECONSTRUCTION; ALGORITHM; ABERRATIONS; SYSTEM;
D O I
10.1364/OE.26.001655
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1655 / 1669
页数:15
相关论文
共 50 条
  • [1] Auto gain control of EMCCD in Shack-Hartmann wavefront sensor for adaptive optics
    Zhu, Zhaoyi
    Li, Dayu
    Hu, Lifa
    Mu, QuanQuan
    Cao, Zhaoliang
    Wang, Yukun
    Wang, Shaoxin
    Xuan, Li
    OPTICS COMMUNICATIONS, 2016, 380 : 469 - 475
  • [2] Improved wavefront reconstruction algorithm for Shack-Hartmann type wavefront sensors
    Pathak, Biswajit
    Boruah, Bosanta R.
    JOURNAL OF OPTICS, 2014, 16 (05)
  • [3] Adaptive centroid optimization for Shack-Hartmann wavefront sensor
    Gan, Jinrui
    Jing, Wenbo
    Wang, Xiaoman
    2013 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING AND PROCESSING TECHNOLOGY, 2013, 9045
  • [4] Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations
    Aftab, Maham
    Choi, Heejoo
    Liang, Rongguang
    Kim, Dae Wook
    OPTICS EXPRESS, 2018, 26 (26): : 34428 - 34441
  • [5] Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy
    Cha, Jae Won
    Ballesta, Jerome
    So, Peter T. C.
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (04)
  • [6] Deep phase retrieval for astronomical Shack-Hartmann wavefront sensors
    Guo, Youming
    Wu, Yu
    Li, Ying
    Rao, Xuejun
    Rao, Changhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (03) : 4347 - 4354
  • [7] Optical path difference microscopy with a Shack-Hartmann wavefront sensor
    Gong, Hai
    Agbana, Temitope E.
    Pozzi, Paolo
    Soloviev, Oleg
    Verhaegen, Michel
    Vdovin, Gleb
    OPTICS LETTERS, 2017, 42 (11) : 2122 - 2125
  • [8] Sensitivity improvements for Shack-Hartmann wavefront sensors using total variation minimization
    Basden, A. G.
    Morris, T. J.
    Gratadour, D.
    Gendron, E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 449 (04) : 3537 - 3542
  • [9] Accounting for intensity variation within pixels of Shack-Hartmann wavefront sensors
    Sangiri, Suman
    Dubra, Alfredo
    Akondi, Vyas
    Optik, 2024, 319
  • [10] Shack-Hartmann wavefront sensor optical dynamic range
    Akondi, Vyas
    Dubra, Alfredo
    OPTICS EXPRESS, 2021, 29 (06) : 8417 - 8429