A Waveguide-Coupled Surface Plasmon Resonance Sensor Using an Au-MgF2-Au Structure

被引:18
作者
Zhang, Pengfei [1 ,2 ]
Liu, Le [3 ]
He, Yonghong [2 ]
Chen, Xiaoxia [4 ]
Ma, Kaijie [5 ]
Wei, Dong [1 ]
机构
[1] Chinese Acad Sci, Beijing Sci Instrument Res & Dev Ctr, Beijing 100190, Peoples R China
[2] Tsinghua Univ, Grad Sch Shenzhen, Inst Opt Imaging & Sensing, Shenzhen Key Lab Minimal Invas Med Technol, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Grad Sch Shenzhen, Inst Green Chem & Energy, Shenzhen 518055, Peoples R China
[4] Shanghai Jiao Tong Univ, Xin Hua Hosp Affiliated, Sch Med, Dept Ophthalmol, Shanghai 200092, Peoples R China
[5] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
关键词
Surface plasmon resonance; Waveguide-coupled surface plasmon resonance; Residual analysis; Biomolecular interaction analysis; C-REACTIVE PROTEIN; SENSITIVITY; INTERROGATION; ENHANCEMENT; RESOLUTION; RANGE;
D O I
10.1007/s11468-018-0792-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe an Au-MgF2-Au trilayered waveguide-coupled surface plasmon resonance (WCSPR) sensor in this article. The characteristics of this sensing structure are compared with those of the conventional single-layered gold surface plasmon resonance (SPR) sensor theoretically and experimentally. The experiment results show that WCSPR can provide not only seven times smaller refractive index resolution in the bulk sensing application but also more accurate measurement results for the biomolecular interaction analysis than the conventional single-layered gold SPR. What's more, this high-resolution sensor is easy to build and not sensitive to film thickness variations. The Au-MgF2-Au trilayered WCSPR may provide a simple and convenient chip-based strategy for performance enhancement of SPR sensors without varying the hardware and software of measurement instruments.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 50 条
[1]   Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors [J].
Abbas, Abdennour ;
Linman, Matthew J. ;
Cheng, Quan .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 156 (01) :169-175
[2]   Widening the Spectral Range of Ultrahigh Field Enhancement by Efficient Coupling of Localized to Extended Plasmons and Cavity Resonances in Grating Geometry [J].
Abutoama, Mohammad ;
Li, Shuzhou ;
Abdulhalim, Ibrahim .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (49) :27612-27623
[3]   Fiber-optic waveguide coupled surface plasmon resonance sensor [J].
Ahn, Jae Heon ;
Seong, Tae Yeon ;
Kim, Won Mok ;
Lee, Taek Sung ;
Kim, Inho ;
Lee, Kyeong-Seok .
OPTICS EXPRESS, 2012, 20 (19) :21729-21738
[4]  
Baaske MD, 2014, NAT NANOTECHNOL, V9, P933, DOI [10.1038/nnano.2014.180, 10.1038/NNANO.2014.180]
[5]   Self-referenced spectroscopy using plasmon waveguide resonance biosensor [J].
Bahrami, Farshid ;
Maisonneuve, Mathieu ;
Meunier, Michel ;
Aitchison, J. Stewart ;
Mojahedi, Mo .
BIOMEDICAL OPTICS EXPRESS, 2014, 5 (08) :2481-2487
[6]   Angular Piecewise Modal Analysis for Waveguide-Coupled Surface Plasmon Resonance Structure [J].
Bera, Mahua ;
Ray, Mina .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (18) :3199-3205
[7]   High-Sensitivity Detection of Carbohydrate Antigen 15-3 Using a Gold/Zinc Oxide Thin Film Surface Plasmon Resonance-Based Biosensor [J].
Chang, Chia-Chen ;
Chiu, Nan-Fu ;
Lin, David Shenhsiung ;
Chu-Su, Yu ;
Liang, Yang-Hung ;
Lin, Chii-Wann .
ANALYTICAL CHEMISTRY, 2010, 82 (04) :1207-1212
[8]   Resolution enhancement of surface plasmon resonance sensors with spectral interrogation: resonant wavelength considerations [J].
Chen, Zhenling ;
Liu, Le ;
He, Yonghong ;
Ma, Hui .
APPLIED OPTICS, 2016, 55 (04) :884-891
[9]   Detect the Hybridization of Single-Stranded DNA by Parallel Scan Spectral Surface Plasmon Resonance Imaging [J].
Chong, Xinyuan ;
Liu, Le ;
Liu, Zhiyi ;
Ma, Suihua ;
Guo, Jun ;
Ji, Yanhong ;
He, Yonghong .
PLASMONICS, 2013, 8 (02) :1185-1191
[10]  
Cooper MA, 2009, LABEL-FREE BIOSENSORS: TECHNIQUES AND APPLICATIONS, P1, DOI 10.1017/CBO9780511626531