Finite Hilbert stability of (bi)canonical curves

被引:16
作者
Alper, Jarod [1 ]
Fedorchuk, Maksym [2 ]
Smyth, David Ishii [3 ]
机构
[1] Univ Los Andes, Dept Matemat, Bogota 111711, Colombia
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 01238 USA
关键词
MODULI SPACE;
D O I
10.1007/s00222-012-0403-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a generic canonically or bicanonically embedded smooth curve has semistable mth Hilbert points for all ma parts per thousand yen2. We also prove that a generic bicanonically embedded smooth curve has stable mth Hilbert points for all ma parts per thousand yen3. In the canonical case, this is accomplished by proving finite Hilbert semistability of special singular curves with -action, namely the canonically embedded balanced ribbon and the canonically embedded balanced double A (2k+1)-curve. In the bicanonical case, we prove finite Hilbert stability of special hyperelliptic curves, namely Wiman curves. Finally, we give examples of canonically embedded smooth curves whose mth Hilbert points are non-semistable for low values of m, but become semistable past a definite threshold.
引用
收藏
页码:671 / 718
页数:48
相关论文
共 28 条
[1]  
[Anonymous], 1993, Geometric invariant theory
[2]  
[Anonymous], 2004, RESULTS MATH RELATED
[3]  
[Anonymous], 2010, THESIS HARVARD U
[4]   On the slope of bielliptic fibrations [J].
Barja, MA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (07) :1899-1906
[5]   RIBBONS AND THEIR CANONICAL EMBEDDINGS [J].
BAYER, D ;
EISENBUD, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (03) :719-756
[6]  
CORNALBA M, 1988, ANN SCI ECOLE NORM S, V21, P455
[7]   The Final Log Canonical Model of the Moduli Space of Stable Curves of Genus 4 [J].
Fedorchuk, Maksym .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (24) :5650-5672
[8]  
Fong L-Y, 1993, J ALGEBRAIC GEOM, V2, P295
[9]  
GIESEKER D, 1983, LECT NOTES MATH, V996, P45
[10]  
GIESEKER D, 1982, TATA I FUNDAMENTAL R, V0069