Structure of second-order symmetric Lorentzian manifolds

被引:23
作者
Blanco, Oihane F. [1 ]
Sanchez, Miguel [1 ]
Senovilla, Jose M. M. [2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Basque Country, Fac Ciencia & Tecnol, Dept Fis Teor & Hist Ciencia, E-48080 Bilbao, Spain
关键词
Second-order symmetric spaces; curvature conditions; Brinkmann spaces; Lorentzian symmetric spaces; plane waves; holonomy of Lorentzian manifolds; SPACES; CLASSIFICATION; GEOMETRY; CURVATURE; FIELDS;
D O I
10.4171/JEMS/368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Second-order symmetric Lorentzian spaces, that is, Lorentzian manifolds with vanishing second derivative del del R equivalent to 0 of the curvature tensor R, are characterized by several geometric properties, and explicitly presented. Locally, they are a product M = M-1 x M-2 where each factor is uniquely determined as follows: M-2 is a Riemannian symmetric space and M-1 is either a constant-curvature Lorentzian space or a definite type of plane wave generalizing the Cahen-Wallach family. In the proper case (i.e., del R not equal 0 at some point), the curvature tensor turns out to be described by some local affine function which characterizes a globally defined parallel lightlike direction. As a consequence, the corresponding global classification is obtained, namely: any complete second-order symmetric space admits as universal covering such a product M-1 x M-2. From the technical point of view, a direct analysis of the second-symmetry partial differential equations is carried out leading to several results of independent interest on spaces with a parallel lightlike vector field, the so-called Brinkmann spaces.
引用
收藏
页码:595 / 634
页数:40
相关论文
共 46 条
[1]  
ALEKSEEVSKII DV, 1975, FUNCTIONAL ANAL APPL, V0009, P00005
[2]   Two-symmetric Lorentzian manifolds [J].
Alekseevsky, Dmitri V. ;
Galaev, Anton S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) :2331-2340
[3]  
[Anonymous], 1985, Geom. Dedicata, DOI DOI 10.1007/BF00233102
[4]   The twistor equation in Lorentzian spin geometry [J].
Baum, H ;
Leitner, F .
MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (04) :795-812
[5]  
Baum H, 2008, IMA V MATH, V144, P251
[6]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[7]   Second-order symmetric Lorentzian manifolds II: structure and global properties [J].
Blanco, O. F. ;
Sanchez, M. ;
Senovilla, J. M. M. .
SPANISH RELATIVITY MEETING (ERE 2010): GRAVITY AS A CROSSROAD IN PHYSICS, 2011, 314
[8]   Complete classification of second-order symmetric spacetimes [J].
Blanco, Oihane F. ;
Sanchez, Miguel ;
Senovilla, Jose M. M. .
SPANISH RELATIVITY MEETING (ERE 2009), 2010, 229
[9]   Einstein spaces which are mapped conformally on each other [J].
Brinkmann, HW .
MATHEMATISCHE ANNALEN, 1925, 94 :119-145
[10]   LORENTZIAN SYMMETRIC SPACES [J].
CAHEN, M ;
WALLACH, N .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (03) :585-&