Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer

被引:19
作者
Tang, Yew Chung [1 ,2 ]
Ho, Szu-Chi [1 ,2 ]
Tan, Elisabeth [1 ,2 ]
Ng, Alvin Wei Tian [1 ,2 ,5 ]
McPherson, John R. [1 ,2 ]
Goh, Germaine Yen Lin [3 ]
Teh, Bin Tean [1 ,3 ,4 ]
Bard, Frederic [3 ]
Rozen, Steven G. [1 ,2 ]
机构
[1] Duke NUS Med Sch, Programme Canc & Stem Cell Biol, 8 Coll Rd, Singapore 169857, Singapore
[2] Duke NUS Med Sch, Ctr Computat Biol, 8 Coll Rd, Singapore 169857, Singapore
[3] Inst Mol & Cell Biol, 61 Biopolis Dr, Singapore 138673, Singapore
[4] Natl Canc Ctr Singapore, 11 Hosp Dr, Singapore 169610, Singapore
[5] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
来源
BREAST CANCER RESEARCH | 2018年 / 20卷
基金
英国医学研究理事会;
关键词
Synthetic lethality; Synthetic sickness; Precision medicine; PTEN; Breast cancer; Targeted cancer therapy; NUAK1; STK11; LKB1; COMPREHENSIVE MOLECULAR PORTRAITS; CELL-CYCLE ARREST; SYNTHETIC LETHALITY; TUMOR-SUPPRESSOR; PROTEIN-KINASE; OVARIAN-CANCER; LARGE-SCALE; GENE; LINES; NUAK1;
D O I
10.1186/s13058-018-0949-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. Methods: To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of similar to 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of similar to 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. Results: The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Conclusions: Six genes showed PTEN-SSL patterns of activity in a large proportion of PTEN-deficient breast cancer cell lines and are potential specific vulnerabilities in PTEN-deficient breast cancer. Furthermore, the NUAK1 PTEN-SSL vulnerability identified by RNA interference techniques can be recapitulated and exploited using the small molecule kinase inhibitor HTH-01-015. Thus, NUAK1 inhibition may be an effective strategy for precision treatment of PTEN-deficient breast tumors.
引用
收藏
页数:16
相关论文
共 74 条
[1]   Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1βMYPT1 phosphatase complex and the SCFβTrCP E3 ubiquitin ligase [J].
Banerjee, Sourav ;
Zagorska, Anna ;
Deak, Maria ;
Campbell, David G. ;
Prescott, Alan R. ;
Alessi, Dario R. .
BIOCHEMICAL JOURNAL, 2014, 461 :233-245
[2]   Characterization of WZ4003 and HTH-01-015 as selective inhibitors of the LKB1-tumour-suppressor-activated NUAK kinases [J].
Banerjee, Sourav ;
Buhrlage, Sara J. ;
Huang, Hai-Tsang ;
Deng, Xianming ;
Zhou, Wenjun ;
Wang, Jinhua ;
Traynor, Ryan ;
Prescott, Alan R. ;
Alessi, Dario R. ;
Gray, Nathanael S. .
BIOCHEMICAL JOURNAL, 2014, 457 :215-225
[3]   Statistical methods for analysis of high-throughput RNA interference screens [J].
Birmingham, Amanda ;
Selfors, Laura M. ;
Forster, Thorsten ;
Wrobel, David ;
Kennedy, Caleb J. ;
Shanks, Emma ;
Santoyo-Lopez, Javier ;
Dunican, Dara J. ;
Long, Aideen ;
Kelleher, Dermot ;
Smith, Queta ;
Beijersbergen, Roderick L. ;
Ghazal, Peter ;
Shamu, Caroline E. .
NATURE METHODS, 2009, 6 (08) :569-575
[4]   Functional Viability Profiles of Breast Cancer [J].
Brough, Rachel ;
Frankum, Jessica R. ;
Sims, David ;
Mackay, Alan ;
Mendes-Pereira, Ana M. ;
Bajrami, Ilirjana ;
Costa-Cabral, Sara ;
Rafiq, Rumana ;
Ahmad, Amar S. ;
Cerone, Maria Antonietta ;
Natrajan, Rachael ;
Sharpe, Rachel ;
Shiu, Kai-Keen ;
Wetterskog, Daniel ;
Dedes, Konstantine J. ;
Lambros, Maryou B. ;
Rawjee, Teeara ;
Linardopoulos, Spiros ;
Reis-Filho, Jorge S. ;
Turner, Nicholas C. ;
Lord, Christopher J. ;
Ashworth, Alan .
CANCER DISCOVERY, 2011, 1 (03) :260-273
[5]   Large-Scale Profiling of Kinase Dependencies in Cancer Cell Lines [J].
Campbell, James ;
Ryan, Colm J. ;
Brough, Rachel ;
Bajrami, Ilirjana ;
Pemberton, Helen N. ;
Chong, Irene Y. ;
Costa-Cabral, Sara ;
Frankum, Jessica ;
Gulati, Aditi ;
Holme, Harriet ;
Miller, Rowan ;
Postel-Vinay, Sophie ;
Rafiq, Rumana ;
Wei, Wenbin ;
Williamson, Chris T. ;
Quigley, David A. ;
Tym, Joe ;
Al-Lazikani, Bissan ;
Fenton, Timothy ;
Natrajan, Rachael ;
Strauss, Sandra J. ;
Ashworth, Alan ;
Lord, Christopher J. .
CELL REPORTS, 2016, 14 (10) :2490-2501
[6]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404
[7]   ARK5 is associated with the invasive and metastatic potential of human breast cancer cells [J].
Chang, Xin-Zhong ;
Yu, Jie ;
Liu, Hai-Yin ;
Dong, Rui-Hua ;
Cao, Xu-Chen .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2012, 138 (02) :247-254
[8]   Gene expression profiling of breast cell lines identifies potential new basal markers [J].
Charafe-Jauffret, E ;
Ginestier, C ;
Monville, F ;
Finetti, P ;
Adélaïde, J ;
Cervera, N ;
Fekairi, S ;
Xerri, L ;
Jacquemier, J ;
Birnbaum, D ;
Bertucci, F .
ONCOGENE, 2006, 25 (15) :2273-2284
[9]   High NUAK1 expression correlates with poor prognosis and involved in NSCLC cells migration and invasion [J].
Chen, Peng ;
Li, Kai ;
Liang, Yan ;
Li, Liqing ;
Zhu, Xiaolin .
EXPERIMENTAL LUNG RESEARCH, 2013, 39 (01) :9-17
[10]   Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer [J].
Cheung, Hiu Wing ;
Cowley, Glenn S. ;
Weir, Barbara A. ;
Boehm, Jesse S. ;
Rusin, Scott ;
Scott, Justine A. ;
East, Alexandra ;
Ali, Levi D. ;
Lizotte, Patrick H. ;
Wong, Terence C. ;
Jiang, Guozhi ;
Hsiao, Jessica ;
Mermel, Craig H. ;
Getz, Gad ;
Barretina, Jordi ;
Gopal, Shuba ;
Tamayo, Pablo ;
Gould, Joshua ;
Tsherniak, Aviad ;
Stransky, Nicolas ;
Luo, Biao ;
Ren, Yin ;
Drapkin, Ronny ;
Bhatia, Sangeeta N. ;
Mesirov, Jill P. ;
Garraway, Levi A. ;
Meyerson, Matthew ;
Lander, Eric S. ;
Root, David E. ;
Hahn, William C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) :12372-12377