Time regularity of solutions to linear equations with Levy noise in infinite dimensions

被引:22
作者
Peszat, S. [1 ]
Zabczyk, J. [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Krakow, Poland
[2] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
关键词
Cadlag and cylindrical cadlag trajectories; Path properties; Ornstein-Uhlenbeck processes; Linear evolution equations; Levy noise; ORNSTEIN-UHLENBECK PROCESSES; STOCHASTIC CONVOLUTIONS; CONTINUITY;
D O I
10.1016/j.spa.2012.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The existence of strong and weak cadlag versions of a solution to a linear equation in a Hilbert space H, driven by a Levy process taking values in a Hilbert space U hooked left arrow H is established. The so-called cylindrical cadlag property is investigated as well. A special emphasis is put on infinite systems of linear equations driven by independent Levy processes. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:719 / 751
页数:33
相关论文
共 21 条
  • [1] [Anonymous], 1974, The Theory of Stochastic Processes
  • [2] Cylindrical Levy processes in Banach spaces
    Applebaum, David
    Riedle, Markus
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 : 697 - 726
  • [3] Continuity of stochastic convolutions
    Brzezniak, Z
    Peszat, S
    Zabczyk, J
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) : 679 - 684
  • [4] Regularity of Ornstein-Uhlenbeck Processes Driven by a L,vy White Noise
    Brzezniak, Zdzisaw
    Zabczyk, Jerzy
    [J]. POTENTIAL ANALYSIS, 2010, 32 (02) : 153 - 188
  • [5] Time irregularity of generalized Ornstein-Uhlenbeck processes
    Brzezniak, Zdzislaw
    Goldys, Ben
    Imkeller, Peter
    Peszat, Szymon
    Priola, Enrico
    Zabczyk, Jerzy
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 273 - 276
  • [6] Chojnowska-Michalik A., 1987, STOCHASTICS, V21, P251, DOI DOI 10.1080/17442508708833459
  • [7] Da Prato G., 1987, Stochastics, V23, P1, DOI 10.1080/17442508708833480
  • [8] Da Prato G., 1992, ENCY MATH ITS APPL
  • [9] A note on maximal inequality for stochastic convolutions
    Hausenblas, E
    Seidler, J
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) : 785 - 790
  • [10] CONTINUITY OF L2-VALUED ORNSTEIN-UHLENBECK PROCESSES
    ISCOE, I
    MARCUS, MB
    MCDONALD, D
    TALAGRAND, M
    ZINN, J
    [J]. ANNALS OF PROBABILITY, 1990, 18 (01) : 68 - 84