Pattern classification of dermoscopy images: A perceptually uniform model

被引:83
作者
Abbas, Qaisar [1 ,2 ,3 ]
Celebi, M. E. [4 ]
Serrano, Carmen [5 ]
Fondon Garcia, Irene [5 ]
Ma, Guangzhi [2 ,3 ]
机构
[1] Natl Text Univ, Dept Comp Sci, Faisalabad 37610, Pakistan
[2] Huazhong Univ Sci & Technol, Dept Comp Sci & Technol, Wuhan 430074, Peoples R China
[3] Minist Educ, Key Lab Image Proc & Intelligent Control, Ctr Biomed Imaging & Bioinformat, Wuhan, Peoples R China
[4] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[5] Univ Seville, Escuela Super Ingn, Seville 41092, Spain
关键词
Dermoscopy; Pattern classification; Steerable pyramid transform; Human visual system; AdaBoost; Multi-label learning; PIGMENTED SKIN-LESIONS; ABCD RULE; TEXTURE; COLOR; DIAGNOSIS; SYSTEM; ADABOOST; MELANOMA;
D O I
10.1016/j.patcog.2012.07.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pattern classification of dermoscopy images is a challenging task of differentiating between benign melanocytic lesions and melanomas. In this paper, a novel pattern classification method based on color symmetry and multiscale texture analysis is developed to assist dermatologists' diagnosis. Our method aims to classify various tumor patterns using color-texture properties extracted in a perceptually uniform color space. In order to design an optimal classifier and to address the problem of multicomponent patterns, an adaptive boosting multi-label learning algorithm (AdaBoost.MC) is developed. Finally, the class label set of the test pattern is determined by fusing the results produced by boosting based on the maximum a posteriori (MAP) and robust ranking principles. The proposed discrimination model for multi-label learning algorithm is fully automatic and obtains higher accuracy compared to existing multi-label classification methods. Our classification model obtains a sensitivity (SE) of 89.28%, specificity (SP) of 93.75% and an area under the curve (AUC) of 0.986. The results demonstrate that our pattern classifier based on color-texture features agrees with dermatologists' perception. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:86 / 97
页数:12
相关论文
共 45 条
  • [1] Abbas Q., SKIN RES TECHNOLOGY
  • [2] PERFORMANCE TESTING OF COLOR-DIFFERENCE METRICS USING A COLOR TOLERANCE DATASET
    ALMAN, DH
    BERNS, RS
    SNYDER, GD
    LARSEN, WA
    [J]. COLOR RESEARCH AND APPLICATION, 1989, 14 (03) : 139 - 151
  • [3] ARGENIANO G, 2002, INTERACTIVE ATLAS DE
  • [4] Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet
    Argenziano, G
    Soyer, HP
    Chimenti, S
    Talamini, R
    Corona, R
    Sera, F
    Binder, M
    Cerroni, L
    De Rosa, G
    Ferrara, G
    Hofmann-Wellenhof, R
    Landthater, M
    Menzies, SW
    Pehamberger, H
    Piccolo, D
    Rabinovitz, HS
    Schiffner, R
    Staibano, S
    Stolz, W
    Bartenjev, I
    Blum, A
    Braun, R
    Cabo, H
    Carli, P
    De Giorgi, V
    Fleming, MG
    Grichnik, JM
    Grin, CM
    Halpern, AC
    Johr, R
    Katz, B
    Kenet, RO
    Kittler, H
    Kreusch, J
    Malvehy, J
    Mazzocchetti, G
    Oliviero, M
    Özdemir, F
    Peris, K
    Perotti, R
    Perusquia, A
    Pizzichetta, MA
    Puig, S
    Rao, B
    Rubegni, P
    Saida, T
    Scalvenzi, M
    Seidenari, S
    Stanganelli, I
    Tanaka, M
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) : 679 - 693
  • [5] Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions
    Blum, A
    Luedtke, H
    Ellwanger, U
    Schwabe, R
    Rassner, G
    Garbe, C
    [J]. BRITISH JOURNAL OF DERMATOLOGY, 2004, 151 (05) : 1029 - 1038
  • [6] Learning multi-label scene classification
    Boutell, MR
    Luo, JB
    Shen, XP
    Brown, CM
    [J]. PATTERN RECOGNITION, 2004, 37 (09) : 1757 - 1771
  • [7] The use of the area under the roc curve in the evaluation of machine learning algorithms
    Bradley, AP
    [J]. PATTERN RECOGNITION, 1997, 30 (07) : 1145 - 1159
  • [8] Melanoma computer-aided diagnosis: Reliability and feasibility study
    Burroni, M
    Corona, R
    Dell'Eva, G
    Sera, F
    Bono, R
    Puddu, P
    Perotti, R
    Nobile, F
    Andreassi, L
    Rubegni, P
    [J]. CLINICAL CANCER RESEARCH, 2004, 10 (06) : 1881 - 1886
  • [9] Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions
    Capdehourat, German
    Corez, Andres
    Bazzano, Anabella
    Alonso, Rodrigo
    Muse, Pablo
    [J]. PATTERN RECOGNITION LETTERS, 2011, 32 (16) : 2187 - 2196
  • [10] A methodological approach to the classification of dermoscopy images
    Celebi, M. Emre
    Kingravi, Hassan A.
    Uddin, Bakhtiyar
    Lyatornid, Hitoshi
    Aslandogan, Y. Alp
    Stoecker, William V.
    Moss, Randy H.
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) : 362 - 373