Pattern classification of dermoscopy images: A perceptually uniform model

被引:85
作者
Abbas, Qaisar [1 ,2 ,3 ]
Celebi, M. E. [4 ]
Serrano, Carmen [5 ]
Fondon Garcia, Irene [5 ]
Ma, Guangzhi [2 ,3 ]
机构
[1] Natl Text Univ, Dept Comp Sci, Faisalabad 37610, Pakistan
[2] Huazhong Univ Sci & Technol, Dept Comp Sci & Technol, Wuhan 430074, Peoples R China
[3] Minist Educ, Key Lab Image Proc & Intelligent Control, Ctr Biomed Imaging & Bioinformat, Wuhan, Peoples R China
[4] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[5] Univ Seville, Escuela Super Ingn, Seville 41092, Spain
关键词
Dermoscopy; Pattern classification; Steerable pyramid transform; Human visual system; AdaBoost; Multi-label learning; PIGMENTED SKIN-LESIONS; ABCD RULE; TEXTURE; COLOR; DIAGNOSIS; SYSTEM; ADABOOST; MELANOMA;
D O I
10.1016/j.patcog.2012.07.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pattern classification of dermoscopy images is a challenging task of differentiating between benign melanocytic lesions and melanomas. In this paper, a novel pattern classification method based on color symmetry and multiscale texture analysis is developed to assist dermatologists' diagnosis. Our method aims to classify various tumor patterns using color-texture properties extracted in a perceptually uniform color space. In order to design an optimal classifier and to address the problem of multicomponent patterns, an adaptive boosting multi-label learning algorithm (AdaBoost.MC) is developed. Finally, the class label set of the test pattern is determined by fusing the results produced by boosting based on the maximum a posteriori (MAP) and robust ranking principles. The proposed discrimination model for multi-label learning algorithm is fully automatic and obtains higher accuracy compared to existing multi-label classification methods. Our classification model obtains a sensitivity (SE) of 89.28%, specificity (SP) of 93.75% and an area under the curve (AUC) of 0.986. The results demonstrate that our pattern classifier based on color-texture features agrees with dermatologists' perception. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:86 / 97
页数:12
相关论文
共 45 条
[1]  
Abbas Q., SKIN RES TECHNOLOGY
[2]   PERFORMANCE TESTING OF COLOR-DIFFERENCE METRICS USING A COLOR TOLERANCE DATASET [J].
ALMAN, DH ;
BERNS, RS ;
SNYDER, GD ;
LARSEN, WA .
COLOR RESEARCH AND APPLICATION, 1989, 14 (03) :139-151
[3]  
ARGENIANO G, 2002, INTERACTIVE ATLAS DE
[4]   Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet [J].
Argenziano, G ;
Soyer, HP ;
Chimenti, S ;
Talamini, R ;
Corona, R ;
Sera, F ;
Binder, M ;
Cerroni, L ;
De Rosa, G ;
Ferrara, G ;
Hofmann-Wellenhof, R ;
Landthater, M ;
Menzies, SW ;
Pehamberger, H ;
Piccolo, D ;
Rabinovitz, HS ;
Schiffner, R ;
Staibano, S ;
Stolz, W ;
Bartenjev, I ;
Blum, A ;
Braun, R ;
Cabo, H ;
Carli, P ;
De Giorgi, V ;
Fleming, MG ;
Grichnik, JM ;
Grin, CM ;
Halpern, AC ;
Johr, R ;
Katz, B ;
Kenet, RO ;
Kittler, H ;
Kreusch, J ;
Malvehy, J ;
Mazzocchetti, G ;
Oliviero, M ;
Özdemir, F ;
Peris, K ;
Perotti, R ;
Perusquia, A ;
Pizzichetta, MA ;
Puig, S ;
Rao, B ;
Rubegni, P ;
Saida, T ;
Scalvenzi, M ;
Seidenari, S ;
Stanganelli, I ;
Tanaka, M .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) :679-693
[5]   Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions [J].
Blum, A ;
Luedtke, H ;
Ellwanger, U ;
Schwabe, R ;
Rassner, G ;
Garbe, C .
BRITISH JOURNAL OF DERMATOLOGY, 2004, 151 (05) :1029-1038
[6]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[7]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[8]   Melanoma computer-aided diagnosis: Reliability and feasibility study [J].
Burroni, M ;
Corona, R ;
Dell'Eva, G ;
Sera, F ;
Bono, R ;
Puddu, P ;
Perotti, R ;
Nobile, F ;
Andreassi, L ;
Rubegni, P .
CLINICAL CANCER RESEARCH, 2004, 10 (06) :1881-1886
[9]   Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions [J].
Capdehourat, German ;
Corez, Andres ;
Bazzano, Anabella ;
Alonso, Rodrigo ;
Muse, Pablo .
PATTERN RECOGNITION LETTERS, 2011, 32 (16) :2187-2196
[10]   A methodological approach to the classification of dermoscopy images [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Uddin, Bakhtiyar ;
Lyatornid, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) :362-373