GeohashTile: Vector Geographic Data Display Method Based on Geohash

被引:15
作者
Zhou, Chang [1 ]
Lu, Huimei [1 ]
Xiang, Yong [2 ]
Wu, Jingbang [3 ]
Wang, Feng [4 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[3] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 102488, Peoples R China
[4] Univ Mississippi, Dept Comp & Informat Sci, University, MS 38677 USA
关键词
GIS; Geohash; vector tile; Leaflet; MODEL;
D O I
10.3390/ijgi9070418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the development of geographic information-based applications for mobile devices, achieving better access speed and visual effects is the main research aim. In this paper, we propose a new geographic data display method based on Geohash, namely GeohashTile, to improve the performance of traditional geographic data display methods in data indexing, data compression, and the projection of different granularities. First, we use the Geohash encoding system to represent coordinates, as well as to partition and index large-scale geographic data. The data compression and tile encoding is accomplished by Geohash. Second, to realize a direct conversion between Geohash and screen-pixel coordinates, we adopt the relative position projection method. Finally, we improve the calculation and rendering efficiency by using the intermediate result caching method. To evaluate the GeohashTile method, we have implemented the client and the server of the GeohashTile system, which is also evaluated in a real-world environment. The results show that Geohash encoding can accurately represent latitude and longitude coordinates in vector maps, while the GeohashTile framework has obvious advantages when requesting data volume and average load time compared to the state-of-the-art GeoTile system.
引用
收藏
页数:25
相关论文
共 28 条
  • [1] A Web Map Service implementation for the visualization of multidimensional gridded environmental data
    Blower, J. D.
    Gemmell, A. L.
    Griffiths, G. H.
    Haines, K.
    Santokhee, A.
    Yang, X.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 47 : 218 - 224
  • [2] Brambilla G., 2016, EUR C PAR PROC
  • [3] Bray T., 1997, World Wide Web J., V2, P27
  • [4] Taxi Demand Forecasting: A HEDGE-Based Tessellation Strategy for Improved Accuracy
    Davis, Neema
    Raina, Gaurav
    Jagannathan, Krishna
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (11) : 3686 - 3697
  • [5] Edler D., 2019, Journal of Cartography and Geographic Information, V69, P51
  • [6] An OLS regression model for context-aware tile prefetching in a web map cache
    Garcia Martin, Ricardo
    de Castro Fernandez, Juan Pablo
    Verdu Perez, Elena
    Verdu Perez, Maria Jesus
    Regueras Santos, Luisa Maria
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2013, 27 (03) : 614 - 632
  • [7] GeoServer Deoliveira J., 2008, P 10 INT C SPAT DAT
  • [8] Guanhua Wang, 2011, Proceedings of the 2011 Third International Conference on Communications and Mobile Computing (CMC 2011), P182, DOI 10.1109/CMC.2011.25
  • [9] OpenStreetMap: User-Generated Street Maps
    Haklay, Mordechai
    Weber, Patrick
    [J]. IEEE PERVASIVE COMPUTING, 2008, 7 (04) : 12 - 18
  • [10] Rapid retrieval strategy for massive remote sensing metadata based on GeoHash coding
    Huang, Keying
    Li, Guoqing
    Wang, Jian
    [J]. REMOTE SENSING LETTERS, 2019, 10 (02) : 111 - 119