Analysis of a sequential regularization method for the unsteady Navier-Stokes equations

被引:1
作者
Lu, Xiliang [1 ]
Lin, Ping [1 ]
Liu, Jian-Guo [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; iterative penalty method; implicit parabolic PDE; error estimates; constrained dynamical system; stabilization method;
D O I
10.1090/S0025-5718-08-02087-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The incompressibility constraint makes Navier-Stokes equations difficult. A reformulation to a better posed problem is needed before solving it numerically. The sequential regularization method (SRM) is a reformulation which combines the penalty method with a stabilization method in the context of constrained dynamical systems and has the benefit of both methods. In the paper, we study the existence and uniqueness for the solution of the SRM and provide a simple proof of the convergence of the solution of the SRM to the solution of the Navier-Stokes equations. We also give error estimates for the time discretized SRM formulation.
引用
收藏
页码:1467 / 1494
页数:28
相关论文
共 50 条
[41]   NONLINEAR GALERKIN METHOD FOR THE EXTERIORNONSTATIONARY NAVIER-STOKES EQUATIONS [J].
何银年 ;
李开泰 .
Applied Mathematics and Mechanics(English Edition), 2002, (11) :1282-1291
[42]   Central Discontinuous Galerkin Method for the Navier-Stokes Equations [J].
Tan Ren ;
Chao Wang ;
Haining Dong ;
Danjie Zhou .
JournalofBeijingInstituteofTechnology, 2017, 26 (02) :158-164
[43]   A hybrid mixed method for the compressible Navier-Stokes equations [J].
Schuetz, Jochen ;
May, Georg .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 240 :58-75
[44]   The proper orthogonal decomposition method for the Navier-Stokes equations [J].
王阿霞 ;
马逸尘 ;
晏文璟 .
Academic Journal of Xi'an Jiaotong University, 2008, (03) :141-148
[45]   The fundamental solution method for incompressible Navier-Stokes equations [J].
Yang, ZS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1998, 28 (03) :565-568
[46]   POSTPROCESSING FOURIER GALERKIN METHOD FOR THE NAVIER-STOKES EQUATIONS [J].
Hou, Yanren ;
Li, Kaitai .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :1909-1922
[47]   The nonconforming virtual element method for the Navier-Stokes equations [J].
Liu, Xin ;
Chen, Zhangxin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (01) :51-74
[48]   CAUCHY PROBLEM FOR NAVIER-STOKES EQUATIONS, FOURIER METHOD [J].
Saks, R. S. .
UFA MATHEMATICAL JOURNAL, 2011, 3 (01) :51-77
[49]   Application of the Fictitious Domain Method for Navier-Stokes Equations [J].
Temirbekov, Almas ;
Zhaksylykova, Zhadra ;
Malgazhdarov, Yerzhan ;
Kasenov, Syrym .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01) :2035-2055
[50]   A new relaxation method for the compressible Navier-Stokes equations [J].
Bongiovanni, E ;
Ern, A ;
Glinsky-Olivier, N .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (10) :1379-1396