Analysis of a sequential regularization method for the unsteady Navier-Stokes equations

被引:1
作者
Lu, Xiliang [1 ]
Lin, Ping [1 ]
Liu, Jian-Guo [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; iterative penalty method; implicit parabolic PDE; error estimates; constrained dynamical system; stabilization method;
D O I
10.1090/S0025-5718-08-02087-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The incompressibility constraint makes Navier-Stokes equations difficult. A reformulation to a better posed problem is needed before solving it numerically. The sequential regularization method (SRM) is a reformulation which combines the penalty method with a stabilization method in the context of constrained dynamical systems and has the benefit of both methods. In the paper, we study the existence and uniqueness for the solution of the SRM and provide a simple proof of the convergence of the solution of the SRM to the solution of the Navier-Stokes equations. We also give error estimates for the time discretized SRM formulation.
引用
收藏
页码:1467 / 1494
页数:28
相关论文
共 50 条
  • [31] Convergence analysis of an implicit fractional-step method for the incompressible Navier-Stokes equations
    Feng, Xinlong
    He, Yinnian
    Liu, Demin
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (12) : 5856 - 5871
  • [32] Analysis of an iterative penalty method for Navier-Stokes equations with nonlinear slip boundary conditions
    Dai, Xiaoxia
    Tang, Peipei
    Wu, Minghui
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (04) : 403 - 413
  • [33] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [34] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [35] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [36] Euler and Navier-Stokes equations
    Constantin, Peter
    [J]. PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [37] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [38] Stabilization of Navier-Stokes Equations
    Barbu, Viorel
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 107 - 116
  • [39] Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2441 - 2453
  • [40] On modifications of the Navier-Stokes equations
    Kobelkov, Georgij M.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2015, 30 (02) : 87 - 93