Analysis of a sequential regularization method for the unsteady Navier-Stokes equations

被引:1
作者
Lu, Xiliang [1 ]
Lin, Ping [1 ]
Liu, Jian-Guo [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; iterative penalty method; implicit parabolic PDE; error estimates; constrained dynamical system; stabilization method;
D O I
10.1090/S0025-5718-08-02087-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The incompressibility constraint makes Navier-Stokes equations difficult. A reformulation to a better posed problem is needed before solving it numerically. The sequential regularization method (SRM) is a reformulation which combines the penalty method with a stabilization method in the context of constrained dynamical systems and has the benefit of both methods. In the paper, we study the existence and uniqueness for the solution of the SRM and provide a simple proof of the convergence of the solution of the SRM to the solution of the Navier-Stokes equations. We also give error estimates for the time discretized SRM formulation.
引用
收藏
页码:1467 / 1494
页数:28
相关论文
共 50 条
  • [21] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Rong, Y.
    Fiordilino, J. A.
    Shi, F.
    Cao, Y.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [22] Stability Analysis for the Navier-Stokes Equations of Hydrodynamics
    Velez, J. A.
    Uribe, F. J.
    Velasco, R. M.
    Garcia-Colin, L. S.
    RAREFIED GAS DYNAMICS, 2009, 1084 : 111 - 116
  • [23] Parallel preconditioners for the unsteady Navier-Stokes equations and applications to hemodynamics simulations
    Deparis, Simone
    Grandperrin, Gwenol
    Quarteroni, Alfio
    COMPUTERS & FLUIDS, 2014, 92 : 253 - 273
  • [24] Local RBFs Based Collocation Methods for Unsteady Navier-Stokes Equations
    Zhang, Xueying
    An, Xin
    Chen, C. S.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2015, 7 (04) : 430 - 440
  • [25] Boundary element analysis of Navier-Stokes equations
    Matsunashi, J.
    Okamoto, N.
    Futagami, T.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (03) : 471 - 476
  • [26] A PN x PN Spectral Element Projection Method for the Unsteady Incompressible Navier-Stokes Equations
    Rong, Zhijian
    Xu, Chuanju
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2008, 1 (03) : 275 - 296
  • [27] Analysis of semidiscretization of the compressible Navier-Stokes equations
    Zatorska, Ewelina
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 559 - 580
  • [28] Error Analysis of a Projection Method for the Navier-Stokes Equations With Coriolis Force
    Olshanskii, Maxim A.
    Sokolov, Andriy
    Turek, Stefan
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (04) : 485 - 502
  • [29] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Y. Rong
    J. A. Fiordilino
    F. Shi
    Y. Cao
    Journal of Scientific Computing, 2022, 92
  • [30] ASYMPTOTIC ANALYSIS OF REDUCED NAVIER-STOKES EQUATIONS BY HOMOTOPY RENORMALIZATION METHOD
    Wang, Chunyan
    Gao, Wenjie
    REPORTS ON MATHEMATICAL PHYSICS, 2017, 80 (01) : 29 - 37