Network intrusion detection system: A systematic study of machine learning and deep learning approaches

被引:442
|
作者
Ahmad, Zeeshan [1 ,2 ]
Shahid Khan, Adnan [1 ]
Wai Shiang, Cheah [1 ]
Abdullah, Johari [1 ]
Ahmad, Farhan [3 ,4 ]
机构
[1] Univ Malaysia Sarawak, Fac Comp Sci & Informat Technol, Sarawak, Malaysia
[2] King Khalid Univ, Dept Elect Engn, Coll Engn, Abha, Saudi Arabia
[3] Univ Derby, Coll Engn & Technol, Cyber Secur Res Grp, Derby, England
[4] Coventry Univ, Inst Future Transport & Cities, Coventry, W Midlands, England
关键词
Deep learning; Machine learning; Network anomaly detection; Network intrusion detection system; Network security; NEURAL-NETWORK; SPARSE AUTOENCODER; ENSEMBLE METHOD; MODEL; ALGORITHM; INTERNET; THINGS; FRAMEWORK; TAXONOMY; TRUST;
D O I
10.1002/ett.4150
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The rapid advances in the internet and communication fields have resulted in a huge increase in the network size and the corresponding data. As a result, many novel attacks are being generated and have posed challenges for network security to accurately detect intrusions. Furthermore, the presence of the intruders with the aim to launch various attacks within the network cannot be ignored. An intrusion detection system (IDS) is one such tool that prevents the network from possible intrusions by inspecting the network traffic, to ensure its confidentiality, integrity, and availability. Despite enormous efforts by the researchers, IDS still faces challenges in improving detection accuracy while reducing false alarm rates and in detecting novel intrusions. Recently, machine learning (ML) and deep learning (DL)-based IDS systems are being deployed as potential solutions to detect intrusions across the network in an efficient manner. This article first clarifies the concept of IDS and then provides the taxonomy based on the notable ML and DL techniques adopted in designing network-based IDS (NIDS) systems. A comprehensive review of the recent NIDS-based articles is provided by discussing the strengths and limitations of the proposed solutions. Then, recent trends and advancements of ML and DL-based NIDS are provided in terms of the proposed methodology, evaluation metrics, and dataset selection. Using the shortcomings of the proposed methods, we highlighted various research challenges and provided the future scope for the research in improving ML and DL-based NIDS.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] A Study: Machine Learning and Deep Learning Approaches for Intrusion Detection System
    Sekhar, C. H.
    Rao, K. Venkata
    SECOND INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGIES, ICCNCT 2019, 2020, 44 : 845 - 849
  • [2] Intelligent Intrusion Detection System for VANET Using Machine Learning and Deep Learning Approaches
    Karthiga, B.
    Durairaj, Danalakshmi
    Nawaz, Nishad
    Venkatasamy, Thiruppathy Kesavan
    Ramasamy, Gopi
    Hariharasudan, A.
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [3] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 303 - 307
  • [4] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 438 - 442
  • [5] The Study of Feature Engineering in Machine Learning and Deep Learning for Network Intrusion Detection Systems
    Ning, Steven
    Khanh Nguyen
    Bagchi, Sohini
    Park, Younghee
    2024 SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2024, 2024,
  • [6] Enhancing Intrusion Detection System Using Machine Learning and Deep Learning
    Madhusudhan, R.
    Thakur, Shubham Kumar
    Pravisha, P.
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 3, AINA 2024, 2024, 201 : 326 - 337
  • [7] Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems
    Thapa, Niraj
    Liu, Zhipeng
    Kc, Dukka B.
    Gokaraju, Balakrishna
    Roy, Kaushik
    FUTURE INTERNET, 2020, 12 (10) : 1 - 16
  • [8] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE Access, 2021, 9 : 7550 - 7563
  • [9] Network intrusion detection system: A machine learning approach
    Panda, Mrutyunjaya
    Abraham, Ajith
    Das, Swagatam
    Patra, Manas Ranjan
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2011, 5 (04): : 347 - 356
  • [10] Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
    Liu, Lan
    Wang, Pengcheng
    Lin, Jun
    Liu, Langzhou
    IEEE ACCESS, 2021, 9 : 7550 - 7563