Semiparametric Analysis of Linear Transformation Models with Covariate Measurement Errors

被引:7
|
作者
Sinha, Samiran [1 ]
Ma, Yanyuan [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Counting process; Estimating equation; Induced hazard; Kernel density; Non-differential measurement errors; U-statistics; FAILURE TIME REGRESSION; CENSORED-DATA; ESTIMATORS; DENSITY;
D O I
10.1111/biom.12119
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We take a semiparametric approach in fitting a linear transformation model to a right censored data when predictive variables are subject to measurement errors. We construct consistent estimating equations when repeated measurements of a surrogate of the unobserved true predictor are available. The proposed approach applies under minimal assumptions on the distributions of the true covariate or the measurement errors. We derive the asymptotic properties of the estimator and illustrate the characteristics of the estimator in finite sample performance via simulation studies. We apply the method to analyze an AIDS clinical trial data set that motivated the work.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 50 条