Spatiotemporal trends in diabetes-related mortality by school district in the state of Michigan, United States

被引:2
作者
Nurjannah, Nurjannah [1 ]
Baker, Kathleen M. [2 ,3 ]
Mashinini, Duduzile Phindi [4 ]
机构
[1] Univ Syiah Kuala, Publ Hlth Dept, Med Sch, Banda Aceh, Indonesia
[2] Western Michigan Univ, Hlth Data Res Anal & Mapping HDReAM Ctr, Kalamazoo, MI USA
[3] Western Michigan Univ, Dept Geog, Kalamazoo, MI USA
[4] Western Michigan Univ, Interdisciplinary Hlth Sci, Coll Hlth & Human Serv, Kalamazoo, MI USA
来源
EPIDEMIOLOGY AND HEALTH | 2021年 / 43卷
关键词
Diabetes mortality; Spatiotemporal analysis; Geographic information systems; Michigan; School district; INTERVENTIONS; PROGRAM; OBESITY; DEATH;
D O I
10.4178/epih.e2021098
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
OBJECTIVES: This study examined the spatiotemporal epidemiological status of diabetes-related death in relation to school district boundaries in the state of Michigan, United States. METHODS: A retrospective observational study was conducted using death records spanning the years 2007-2014 in Michigan, with school districts as the geographic unit of analysis. Geocoding was performed for each death record. Cluster analysis used spatial autocorrelation with local Moran's I, and spatiotemporal analysis used the Space Time Pattern Mining tool in Arc-GIS Pro 2.1. RESULTS: The study revealed spatial clusters of high-high locations of diabetes-related mortality rate by school district in Michigan from 2007 to 2014. Spatiotemporal analysis showed grids with intensifying, consecutive, sporadic, and persistent hotspots of diabetes-related death in the Lansing, Royal Oak, Flint City, Berkley, Detroit City, East Lansing, South Lake, and Holt public school districts. These school districts should be prioritized for school-based diabetes prevention programs CONCLUSIONS: The study demonstrated the presence of various hotspots of diabetes-related deaths within the state of Michigan across the 8-year period of analysis. Understanding spatial and temporal hotspots could further improve our ability to evaluate diabetes burden across both time and space.
引用
收藏
页数:12
相关论文
共 48 条
  • [1] [Anonymous], 2011, Cardiovascular disease
  • [2] [Anonymous], 2016, CHRON DIS PREV HLTH
  • [3] GeoDa:: An introduction to spatial data analysis
    Anselin, L
    Syabri, I
    Kho, Y
    [J]. GEOGRAPHICAL ANALYSIS, 2006, 38 (01) : 5 - 22
  • [4] Anselin Luc., 2003, GeoDaTM 0.9 User's Guide
  • [5] A School-Based Intervention for Diabetes Risk Reduction.
    Baranowski, T.
    Adams, L.
    Baranowski, J.
    Canada, A.
    Cullen, K. W.
    Dobbins, M. H.
    Jago, R.
    Oceguera, A.
    Rodriguez, A. X.
    Speich, C.
    Tatum, L. T.
    Thompson, D.
    White, M. A.
    Williams, C. G.
    Goldberg, L.
    Cusimano, D.
    DeBar, L.
    Elliot, D.
    Grund, H. M.
    Kuehl, K.
    McCormick, S.
    Moe, E.
    Roullet, J. B.
    Stadler, D.
    Foster, G. D.
    Brown, J.
    Creighton, B.
    Faith, M.
    Ford, E. G.
    Glick, H.
    Kumanyika, S.
    Nachmani, J.
    Rosen, J.
    Rosen, L.
    Sherman, S.
    Solomon, S.
    Virus, A.
    Volpe, S. L.
    Willi, S.
    Cooper, D.
    Bassin, S.
    Bruecker, S.
    Ford, D.
    Galassetti, P.
    Greenfield, S.
    Hartstein, J.
    Krause, M.
    Opgrand, N.
    Rodriguez, Y.
    Schneider, M.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (05) : 443 - 453
  • [6] Blue Cross Blue Shield Michigan, 2017, BUILD HLTH COMM PROG
  • [7] Centers for Disease Control, 2017, NUTR PHYS ACTIVITY H
  • [8] Centers for Disease Control and Prevention, 2013, STAT PUBL HLTH ACT 1
  • [9] Centers for Disease Control and Prevention, 2015, UND 1999 2014
  • [10] Centers for Disease Control and Prevention, 2004, INSTR COMPL CAUS OF