An improved singular Trudinger-Moser inequality in unit ball

被引:17
作者
Yuan, Anfeng [1 ,2 ]
Zhu, Xiaobao [1 ]
机构
[1] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[2] Beijing Union Univ, Dept Fdn Courses, Beijing 100101, Peoples R China
基金
美国国家科学基金会;
关键词
Trudinger-Moser inequality; Singular Trudinger-Moser inequality; SHARP FORM;
D O I
10.1016/j.jmaa.2015.10.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B subset of R (n >= 2) be the unit ball centered at the origin with radius 1. Let beta, 0 <= beta < n, be fixed. Define lambda(beta)(B)= inf(u is an element of 01,n) (B) , u not equivalent to 0 integral(B) vertical bar del vertical bar(n)dx/integral(B) vertical bar x vertical bar(-beta) vertical bar u vertical bar(n)dx Suppose that gamma satisfies gamma/alpha(n) + beta/n = 1, where alpha(n) = n omega(1/(n-1))(n-1) is the area of the unit sphere in R-n. Using rearrangement argument, we prove that for any alpha, 0 <= alpha <lambda(beta) (B), there holds u is an element of W-0(1,n) (B) integral(sup)(B) vertical bar del u vertical bar(n) dx <=integral vertical bar x vertical bar(-beta) e(gamma vertical bar u vertical bar) (n/n-1) ((1 + alpha) integral B vertical bar x vertical bar-beta vertical bar u vertical bar n) (dx) 1/n-1) dx < + infinity. Moreover, we prove that the above supremum is infinity for a >= lambda(beta) (B). This improves earlier results of Yang [15] and Adimurthi and Sandeep [2] in the unit ball. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:244 / 252
页数:9
相关论文
共 20 条