Multiplex protein assays based on real-time magnetic nanotag sensing

被引:219
作者
Osterfeld, Sebastian J. [2 ]
Yu, Heng [1 ]
Gaster, Richard S. [3 ]
Caramuta, Stefano [1 ]
Xu, Liang [2 ]
Han, Shu-Jen [2 ]
Hall, Drew A. [4 ]
Wilson, Robert J. [2 ]
Sun, Shouheng [5 ]
White, Robert L. [2 ,4 ]
Davis, Ronald W. [1 ]
Pourmand, Nader [1 ,6 ]
Wang, Shan X. [2 ,4 ]
机构
[1] Stanford Univ, Stanford Genome Technol Ctr, Palo Alto, CA 94304 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[5] Brown Univ, Dept Chem, Providence, RI 02912 USA
[6] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
giant magnetoresistive sensors; GMR; magnetic nanotags; multiplex protein detection; biochip;
D O I
10.1073/pnas.0810822105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic nanotags (MNTs) are a promising alternative to fluorescent labels in biomolecular detection assays, because minute quantities of MNTs can be detected with inexpensive giant magnetoresistive (GMR) sensors, such as spin valve (SV) sensors. However, translating this promise into easy to use and multilplexed protein assays, which are highly sought after in molecular diagnostics such as cancer diagnosis and treatment monitoring, has been challenging. Here, we demonstrate multiplex protein detection of potential cancer markers at subpicomolar concentration levels and with a dynamic range of more than four decades. With the addition of nanotag amplification, the analytic sensitivity extends into the low fM concentration range. The multianalyte ability, sensitivity, scalability, and ease of use of the MNT-based protein assay technology make it a strong contender for versatile and portable molecular diagnostics in both research and clinical settings.
引用
收藏
页码:20637 / 20640
页数:4
相关论文
共 27 条
[1]   A biosensor based on magnetoresistance technology [J].
Baselt, DR ;
Lee, GU ;
Natesan, M ;
Metzger, SW ;
Sheehan, PE ;
Colton, RJ .
BIOSENSORS & BIOELECTRONICS, 1998, 13 (7-8) :731-739
[2]   Preparation and characterization of new WHO reference reagents for human chorionic gonadotropin and metabolites [J].
Birken, S ;
Berger, P ;
Bidart, JM ;
Weber, M ;
Bristow, A ;
Norman, RJ ;
Sturgeon, C ;
Stenman, UH .
CLINICAL CHEMISTRY, 2003, 49 (01) :144-154
[3]  
BOER BM, 2006, BIOSENS BIOELECTRON, V22, P2366
[4]   The BARC biosensor applied to the detection of biological warfare agents [J].
Edelstein, RL ;
Tamanaha, CR ;
Sheehan, PE ;
Miller, MM ;
Baselt, DR ;
Whitman, LJ ;
Colton, RJ .
BIOSENSORS & BIOELECTRONICS, 2000, 14 (10-11) :805-813
[5]   Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications [J].
Graham, DL ;
Ferreira, H ;
Bernardo, J ;
Freitas, PP ;
Cabral, JMS .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) :7786-7788
[6]   A novel zero-drift detection method for highly sensitive GMR biochips [J].
Han, S. -J. ;
Xu, L. ;
Wilson, R. J. ;
Wang, S. X. .
IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (10) :3560-3562
[7]  
JANSSEN XJA, 2007, BIOSENS BIOELECTRON, V23, P388
[8]   Multiplexed protein measurement: technologies and applications of protein and antibody arrays [J].
Kingsmore, SF .
NATURE REVIEWS DRUG DISCOVERY, 2006, 5 (04) :310-320
[9]  
Korhonen J, 1997, CLIN CHEM, V43, P2155
[10]   Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications [J].
Li, GX ;
Sun, SH ;
Wilson, RJ ;
White, RL ;
Pourmand, N ;
Wang, SX .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 126 (01) :98-106