Predictive accuracy of the breast cancer genetic risk model based on eight common genetic variants: The BACkSIDE study

被引:3
|
作者
Dankova, Zuzana [1 ]
Zubor, Pavol [1 ,2 ]
Marian, Grendar [3 ]
Katarina, Zelinova [2 ]
Marianna, Jagelkova [2 ]
Igor, Sf'astny [1 ]
Andrea, Kapinova [1 ]
Daniela, Vargova [1 ]
Petra, Kasajova [2 ]
Dana, Dvorska [4 ]
Michal, Kalman [5 ]
Jan, Danko [2 ]
Zora, Lasabova [1 ]
机构
[1] Comenius Univ Bratislava JFMED UK, Jessenius Fac Med Martin, Biomed Ctr Martin, Div Oncol, Martin, Slovakia
[2] Martin Univ Hosp, Clin Gynaecol & Obstet, Martin, Slovakia
[3] JFMED UK, Biomed Ctr Martin, Bioinformat Unit, Martin, Slovakia
[4] JFMED UK, Biomed Ctr Martin, Div Mol Med, Martin, Slovakia
[5] Martin Univ Hosp, Dept Pathol, Martin, Slovakia
关键词
SNP; Risk model; Breast cancer; Random Forest algorithm; AUC; GENOME-WIDE ASSOCIATION; SINGLE NUCLEOTIDE POLYMORPHISMS; SUSCEPTIBILITY; PREVENTION; DIAGNOSIS; PANEL; GWAS; SNPS;
D O I
10.1016/j.jbiotec.2019.04.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 +/- 11.60 years) and 146 control subjects (50.24 +/- 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP's were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95% CI 1.014-3.834, p = 0.049), CT 1.771 (95% CI 1.088-2.899, p = 0.026) and MAP3K1 CC 2.894 (95% CI 1.028-9.566, p = 0.048), AC 1.760 (95% CI 1.108-2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [31] A Risk Prediction Algorithm Based on Family History and Common Genetic Variants: Application to Prostate Cancer with Potential Clinical Impact
    MacInnis, Robert J.
    Antoniou, Antonis C.
    Eeles, Rosalind A.
    Severi, Gianluca
    Al Olama, Ali Amin
    McGuffog, Lesley
    Kote-Jarai, Zsofia
    Guy, Michelle
    O'Brien, Lynne T.
    Hall, Amanda L.
    Wilkinson, Rosemary A.
    Sawyer, Emma
    Ardern-Jones, Audrey T.
    Dearnaley, David P.
    Horwich, Alan
    Khoo, Vincent S.
    Parker, Christopher C.
    Huddart, Robert A.
    Van As, Nicholas
    McCredie, Margaret R.
    English, Dallas R.
    Giles, Graham G.
    Hopper, John L.
    Easton, Douglas F.
    GENETIC EPIDEMIOLOGY, 2011, 35 (06) : 549 - 556
  • [32] Common genetic variants in pre-microRNAs and risk of breast cancer in the North Indian population
    Bansal, C.
    Sharma, K. L.
    Misra, Sanjeev
    Srivastava, A. N.
    Mittal, Balraj
    Singh, U. S.
    ECANCERMEDICALSCIENCE, 2014, 8
  • [33] Common Genetic Variants in the MicroRNA Biogenesis Pathway Are not Associated with Breast Cancer Risk in Asian Women
    Sung, Hyuna
    Zhang, Ben
    Choi, Ji-Yeob
    Long, Jirong
    Park, Sue K.
    Yoo, Keun-Young
    Noh, Dong-Young
    Ahn, Sei-Hyun
    Zheng, Wei
    Kang, Daehee
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2012, 21 (08) : 1385 - 1387
  • [34] Evaluation of Functional Genetic Variants for Breast Cancer Risk: Results From the Shanghai Breast Cancer Study
    Zhang, Ben
    Beeghly-Fadiel, Alicia
    Lu, Wei
    Cai, Qiuyin
    Xiang, Yong-Bing
    Zheng, Ying
    Long, Jirong
    Ye, Chuanzhong
    Gu, Kai
    Shu, Xiao-Ou
    Gao, Yutang
    Zheng, Wei
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (10) : 1159 - 1170
  • [35] Common Genetic Variants in NEFL Influence Gene Expression and Neuroblastoma Risk
    Capasso, Mario
    Diskin, Sharon
    Cimmino, Flora
    Acierno, Giovanni
    Totaro, Francesca
    Petrosino, Giuseppe
    Pezone, Lucia
    Diamond, Maura
    McDaniel, Lee
    Hakonarson, Hakon
    Iolascon, Achille
    Devoto, Marcella
    Maris, John M.
    CANCER RESEARCH, 2014, 74 (23) : 6913 - 6924
  • [36] Phenotype-Based Genetic Association Studies (PGAS)-Towards Understanding the Contribution of Common Genetic Variants to Schizophrenia Subphenotypes
    Ehrenreich, Hannelore
    Nave, Klaus-Armin
    GENES, 2014, 5 (01) : 97 - 105
  • [37] Interaction between genetic ancestry and common breast cancer susceptibility variants in Colombian women
    Torres, Diana
    Bermejo, Justo Lorenzo
    Mesa, Karen Garcia
    Gilbert, Michael
    Briceno, Ignacio
    Pohl-Zeidler, Svenja
    Silos, Rosa Gonzalez
    Boekstegers, Felix
    Plass, Christoph
    Hamann, Ute
    INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (09) : 2181 - 2191
  • [38] Rare and common genetic variants underlying the risk of Hirschsprung's disease
    Xiao, Jun
    Feng, Chenzhao
    Zhu, Tianqi
    Zhang, Xuan
    Chen, Xuyong
    Li, Zejian
    You, Jingyi
    Wang, Qiong
    Zhuansun, Didi
    Meng, Xinyao
    Wang, Jing
    Xiang, Lei
    Yu, Xiaosi
    Zhou, Bingyan
    Tang, Weibing
    Tou, Jinfa
    Wang, Yi
    Yang, Heying
    Yu, Lei
    Liu, Yuanmei
    Jiang, Xuewu
    Ren, Hongxia
    Yu, Mei
    Chen, Qi
    Yin, Qiang
    Liu, Xiang
    Xu, Zhilin
    Wu, Dianming
    Yu, Donghai
    Wu, Xiaojuan
    Yang, Jixin
    Xiong, Bo
    Chen, Feng
    Hao, Xingjie
    Feng, Jiexiong
    HUMAN MOLECULAR GENETICS, 2025, 34 (07) : 586 - 598
  • [39] Interactions Between Genetic Variants and Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium
    Campa, Daniele
    Kaaks, Rudolf
    Le Marchand, Loic
    Haiman, Christopher A.
    Travis, Ruth C.
    Berg, Christine D.
    Buring, Julie E.
    Chanock, Stephen J.
    Diver, W. Ryan
    Dostal, Lucie
    Fournier, Agnes
    Hankinson, Susan E.
    Henderson, Brian E.
    Hoover, Robert N.
    Isaacs, Claudine
    Johansson, Mattias
    Kolonel, Laurence N.
    Kraft, Peter
    Lee, I-Min
    McCarty, Catherine A.
    Overvad, Kim
    Panico, Salvatore
    Peeters, Petra H. M.
    Riboli, Elio
    Jose Sanchez, Maria
    Schumacher, Fredrick R.
    Skeie, Guri
    Stram, Daniel O.
    Thun, Michael J.
    Trichopoulos, Dimitrios
    Zhang, Shumin
    Ziegler, Regina G.
    Hunter, David J.
    Lindstroem, Sara
    Canzian, Federico
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2011, 103 (16): : 1252 - 1263
  • [40] Breast cancer pathology and stage are better predicted by risk stratification models that include mammographic density and common genetic variants
    D. Gareth R. Evans
    Elaine F. Harkness
    Adam R. Brentnall
    Elke M. van Veen
    Susan M. Astley
    Helen Byers
    Sarah Sampson
    Jake Southworth
    Paula Stavrinos
    Sacha J. Howell
    Anthony J. Maxwell
    Anthony Howell
    William G. Newman
    Jack Cuzick
    Breast Cancer Research and Treatment, 2019, 176 : 141 - 148