Predictive accuracy of the breast cancer genetic risk model based on eight common genetic variants: The BACkSIDE study

被引:3
|
作者
Dankova, Zuzana [1 ]
Zubor, Pavol [1 ,2 ]
Marian, Grendar [3 ]
Katarina, Zelinova [2 ]
Marianna, Jagelkova [2 ]
Igor, Sf'astny [1 ]
Andrea, Kapinova [1 ]
Daniela, Vargova [1 ]
Petra, Kasajova [2 ]
Dana, Dvorska [4 ]
Michal, Kalman [5 ]
Jan, Danko [2 ]
Zora, Lasabova [1 ]
机构
[1] Comenius Univ Bratislava JFMED UK, Jessenius Fac Med Martin, Biomed Ctr Martin, Div Oncol, Martin, Slovakia
[2] Martin Univ Hosp, Clin Gynaecol & Obstet, Martin, Slovakia
[3] JFMED UK, Biomed Ctr Martin, Bioinformat Unit, Martin, Slovakia
[4] JFMED UK, Biomed Ctr Martin, Div Mol Med, Martin, Slovakia
[5] Martin Univ Hosp, Dept Pathol, Martin, Slovakia
关键词
SNP; Risk model; Breast cancer; Random Forest algorithm; AUC; GENOME-WIDE ASSOCIATION; SINGLE NUCLEOTIDE POLYMORPHISMS; SUSCEPTIBILITY; PREVENTION; DIAGNOSIS; PANEL; GWAS; SNPS;
D O I
10.1016/j.jbiotec.2019.04.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Breast cancer (BC) development is caused by the interaction of environmental and genetic factors. At least 90 susceptible genetic variants with different population penetration and incidence have been associated with BC. This paper therefore analysed the individual discrimination power of 8 low penetrant common genetic variants and calculated the predictive accuracy of the genetic risk model. The study enrolled 171 women with developed breast cancer (57.06 +/- 11.60 years) and 146 control subjects (50.24 +/- 10.69 years). The genotyping was performed by high resolution melting method (HRM) and confirmed by Sanger sequencing, and the Random Forest algorithm provided the ROC curve with AUC values. Significant association with BC was confirmed in 2 SNPs: rs2981582 FGFR2 and rs889312 MAP3K1, and the odds ratios of homozygotes with two risk alleles in both SNP's were higher than in heterozygotes with one mutant allele, as follows: FGFR2 TT: 1.953 (95% CI 1.014-3.834, p = 0.049), CT 1.771 (95% CI 1.088-2.899, p = 0.026) and MAP3K1 CC 2.894 (95% CI 1.028-9.566, p = 0.048), AC 1.760 (95% CI 1.108-2.813, p = 0.019). FGFR2 had the best discrimination ability, followed by MAP3K1 and CASP8. Discriminative accuracy of the genetic risk model distinguishing the breast cancer patients and controls explained by AUC was 0.728, with 70.6% sensitivity and 65.1% specificity. Our study results therefore confirmed polygenic breast cancer inheritance with important involvement of FGFR2, MAP3K1, LSP1 and CASP8 gene variants.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants
    Mavaddat, Nasim
    Pharoah, Paul D. P.
    Michailidou, Kyriaki
    Tyrer, Jonathan
    Brook, Mark N.
    Bolla, Manjeet K.
    Wang, Qin
    Dennis, Joe
    Dunning, Alison M.
    Shah, Mitul
    Luben, Robert
    Brown, Judith
    Bojesen, Stig E.
    Nordestgaard, Borge G.
    Nielsen, Sune F.
    Flyger, Henrik
    Czene, Kamila
    Darabi, Hatef
    Eriksson, Mikael
    Peto, Julian
    dos-Santos-Silva, Isabel
    Dudbridge, Frank
    Johnson, Nichola
    Schmidt, Marjanka K.
    Broeks, Annegien
    Verhoef, Senno
    Rutgers, Emiel J.
    Swerdlow, Anthony
    Ashworth, Alan
    Orr, Nick
    Schoemaker, Minouk J.
    Figueroa, Jonine
    Chanock, Stephen J.
    Brinton, Louise
    Lissowska, Jolanta
    Couch, Fergus J.
    Olson, Janet E.
    Vachon, Celine
    Pankratz, Vernon S.
    Lambrechts, Diether
    Wildiers, Hans
    Van Ongeval, Chantal
    Van Limbergen, Erik
    Kristensen, Vessela
    Alnaes, Grethe Grenaker
    Nord, Silje
    Borresen-Dale, Anne-Lise
    Nevanlinna, Heli
    Muranen, Taru A.
    Aittomaeki, Kristiina
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2015, 107 (05):
  • [2] Mammographic Breast Density and Common Genetic Variants in Breast Cancer Risk Prediction
    Lee, Charmaine Pei Ling
    Choi, Hyungwon
    Soo, Khee Chee
    Tan, Min-Han
    Chay, Wen Yee
    Chia, Kee Seng
    Liu, Jenny
    Li, Jingmei
    Hartman, Mikael
    PLOS ONE, 2015, 10 (09):
  • [3] Association of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population
    Chan, M.
    Ji, S. M.
    Liaw, C. S.
    Yap, Y. S.
    Law, H. Y.
    Yoon, C. S.
    Wong, C. Y.
    Yong, W. S.
    Wong, N. S.
    Ng, R.
    Ong, K. W.
    Madhukumar, P.
    Oey, C. L.
    Tan, P. H.
    Li, H. H.
    Ang, P.
    Ho, G. H.
    Lee, A. S. G.
    BREAST CANCER RESEARCH AND TREATMENT, 2012, 136 (01) : 209 - 220
  • [4] Prediction of breast cancer risk based on common genetic variants in Japanese women
    Ito, Hidemi
    Iwasaki, Motoki
    Koriyama, Chihaya
    Taniyama, Yukari
    Oze, Isao
    Imoto, Issei
    Ohno, Yuko
    Tsugane, Shoichiro
    Iwata, Hiroji
    Matsuo, Keitaro
    CANCER SCIENCE, 2018, 109 : 483 - 483
  • [5] Association of Common Genetic Variants With Contralateral Breast Cancer Risk in the WECARE Study
    Robson, Mark E.
    Reiner, Anne S.
    Brooks, Jennifer D.
    Concannon, Patrick J.
    John, Esther M.
    Mellemkjaer, Lene
    Bernstein, Leslie
    Malone, Kathleen E.
    Knight, Julia A.
    Lynch, Charles F.
    Woods, Meghan
    Liang, Xiaolin
    Haile, Robert W.
    Duggan, David J.
    Shore, Roy E.
    Smith, Susan A.
    Thomas, Duncan C.
    Stram, Daniel O.
    Bernstein, Jonine L.
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2017, 109 (10):
  • [6] Performance of Common Genetic Variants in Breast-Cancer Risk Models.
    Wacholder, Sholom
    Hartge, Patricia
    Prentice, Ross
    Garcia-Closas, Montserrat
    Feigelson, Heather Spencer
    Diver, W. Ryan
    Thun, Michael J.
    Cox, David G.
    Hankinson, Susan E.
    Kraft, Peter
    Rosner, Bernard
    Berg, Christine D.
    Brinton, Louise A.
    Lissowska, Jolanta
    Sherman, Mark E.
    Chlebowski, Rowan
    Kooperberg, Charles
    Jackson, Rebecca D.
    Buckman, Dennis W.
    Hui, Peter
    Pfeiffer, Ruth
    Jacobs, Kevin B.
    Thomas, Gilles D.
    Hoover, Robert N.
    Gail, Mitchell H.
    Chanock, Stephen J.
    Hunter, David J.
    NEW ENGLAND JOURNAL OF MEDICINE, 2010, 362 (11): : 986 - 993
  • [7] Discriminatory power of common genetic variants in personalized breast cancer diagnosis
    Wu, Yirong
    Abbey, Craig K.
    Liu, Jie
    Ong, Irene
    Peissig, Peggy
    Onitilo, Adedayo A.
    Fan, Jun
    Yuan, Ming
    Burnside, Elizabeth S.
    MEDICAL IMAGING 2016: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2016, 9787
  • [8] The precision relationships between eight GWAS-identified genetic variants and breast cancer in a Chinese population
    Chen, Yazhen
    Fu, Fangmeng
    Lin, Yuxiang
    Qiu, Lin
    Lu, Minjun
    Zhang, Jiantang
    Qiu, Wei
    Yang, Peidong
    Wu, Na
    Huang, Meng
    Wang, Chuan
    ONCOTARGET, 2016, 7 (46) : 75457 - 75467
  • [9] Association of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population
    M. Chan
    S. M. Ji
    C. S. Liaw
    Y. S. Yap
    H. Y. Law
    C. S. Yoon
    C. Y. Wong
    W. S. Yong
    N. S. Wong
    R. Ng
    K. W. Ong
    P. Madhukumar
    C. L. Oey
    P. H. Tan
    H. H. Li
    P. Ang
    G. H. Ho
    A. S. G. Lee
    Breast Cancer Research and Treatment, 2012, 136 : 209 - 220
  • [10] Genetic variants in lncRNA SRA and risk of breast cancer
    Yan, Rui
    Wang, Kaijuan
    Peng, Rui
    Wang, Shuaibing
    Cao, Jingjing
    Wang, Peng
    Song, Chunhua
    ONCOTARGET, 2016, 7 (16) : 22486 - 22496